1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
14

Christopher tried this number trick

Mathematics
2 answers:
MrRissso [65]3 years ago
7 0
The following steps are OK:
 1) 2n Multiply by 2
 2) 2n + 7 Days in a week
 For this case the error occurs in the next step:
 3) 100n + 7 Multiply by 50
 The correct procedure is:
 3) (2n + 7) * 50 = 100n + 350
 answer:
 line the error occurs is:
 3) 100n + 7 Multiply by 50
tresset_1 [31]3 years ago
4 0
<span>The error occurs at step 3 when 2n + 7 is multiplied by 50. The result should have 100n + 350 which should be used for further calculations. But in step 3, it shows 100n +7 which indicates the multiplication with 50 influenced only the first variable 2n and not the second one which was 7. Hence the calculation error occurred in step 3.</span>
You might be interested in
Local winds are created by _____.
Natasha_Volkova [10]

The correct answer is C.

3 0
3 years ago
Read 2 more answers
Consider a function that describes how a particular cars gas mileage depends on its speed. What would be an appropriate domain f
Elina [12.6K]

gas mileage = k*s, where k is a constant of proportionality and s is the speed. Unfortunately, this does not take into account the fact that the engine consumes fuel even when the car is not moving.


Here it makes most sense to regard {0, S} as the domain for this function. Here, S would represent the car's top speed.


8 0
4 years ago
Read 2 more answers
Sally has a discount card that reduces the price of her grocery bill in a certain grocery store
ki77a [65]

0.95c

100% minus 5% is 95%, or 0.95. This means Sally only has to pay 0.95 times the grocery bill, or c, which represents 0.95c.

7 0
3 years ago
Statements :
3241004551 [841]

Answer:

"e^x is irrational for every nonzero integer x"

Step-by-step explanation:

The original statement is

"e^x is rational for some nonzero integer x."

The negation is technically:

"It is NOT true that e^x is rational for some nonzero integer x."

So it's expressing that it's false that e^x can be rational for some nonzero integer x.

This just means that e^x is always irrational when x is a nonzero integer.

Which can be worded as

"e^x is irrational for every nonzero integer x"

4 0
3 years ago
The lifetime X (in hundreds of hours) of a certain type of vacuum tube has a Weibull distribution with parameters α = 2 and β =
stich3 [128]

I'm assuming \alpha is the shape parameter and \beta is the scale parameter. Then the PDF is

f_X(x)=\begin{cases}\dfrac29xe^{-x^2/9}&\text{for }x\ge0\\\\0&\text{otherwise}\end{cases}

a. The expectation is

E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx

To compute this integral, recall the definition of the Gamma function,

\Gamma(x)=\displaystyle\int_0^\infty t^{x-1}e^{-t}\,\mathrm dt

For this particular integral, first integrate by parts, taking

u=x\implies\mathrm du=\mathrm dx

\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}

E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x

E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx

Substitute x=3y^{1/2}, so that \mathrm dx=\dfrac32y^{-1/2}\,\mathrm dy:

E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy

\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}

The variance is

\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2

The second moment is

E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx

Integrate by parts, taking

u=x^2\implies\mathrm du=2x\,\mathrm dx

\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}

E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx

E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx

Substitute x=3y^{1/2} again to get

E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9

Then the variance is

\mathrm{Var}[X]=9-E[X]^2

\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}

b. The probability that X\le3 is

P(X\le 3)=\displaystyle\int_{-\infty}^3f_X(x)\,\mathrm dx=\frac29\int_0^3xe^{-x^2/9}\,\mathrm dx

which can be handled with the same substitution used in part (a). We get

\boxed{P(X\le 3)=\dfrac{e-1}e\approx0.632}

c. Same procedure as in (b). We have

P(1\le X\le3)=P(X\le3)-P(X\le1)

and

P(X\le1)=\displaystyle\int_{-\infty}^1f_X(x)\,\mathrm dx=\frac29\int_0^1xe^{-x^2/9}\,\mathrm dx=\frac{e^{1/9}-1}{e^{1/9}}

Then

\boxed{P(1\le X\le3)=\dfrac{e^{8/9}-1}e\approx0.527}

7 0
3 years ago
Other questions:
  • Is 6 pints greater than, less than, or equal to 60 fluid ounces
    14·2 answers
  • 2.4.185 -0.93<br> 3<br> Please
    15·1 answer
  • Verify that the indicated function y = ϕ(x) is an explicit solution of the given first-order differential equation. (y − x)y' =
    14·1 answer
  • I need help with this plz...Thanks
    15·1 answer
  • Choose the most appropriate name for the function described below.
    6·2 answers
  • What is the solution set of |x – 4| + 7 = 4?
    9·1 answer
  • 1.6 hours to 9.5 hour
    10·1 answer
  • Math help will be marking brainliest
    7·1 answer
  • Multiply.<br><br> −49×58<br> Enter your answer as a fraction, in simplified form,
    8·2 answers
  • PLS HELP LOL!!! Isabella and Alice are standing some distance apart on the same side of a building 50 meters tall. From where Is
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!