Answer:
Convert the following into rupees and paise.
a. 300paise = <u>3</u> Rupees <u>0</u> paise
b. 705paise = <u>7</u> Rupees <u>5</u> paise
c. 3260paise = <u>3</u><u>2</u> Rupees <u>6</u><u>0</u> paise
d. 5275paise = <u>5</u><u>2</u> Rupees <u>7</u><u>5</u> paise
e. 8265paise = <u>8</u><u>2</u> Rupees <u>6</u><u>5</u> paise
f. 9305paise = <u>9</u><u>3</u> Rupees <u>5</u> paise
g. 6010paise = <u>6</u><u>0</u> Rupees <u>1</u><u>0</u> paise
h. 7995paise = <u>7</u><u>9</u> Rupees <u>9</u><u>5</u> paise
i. 2335paise = <u>2</u><u>3</u> Rupees <u>3</u><u>5</u> paise
j. 1175 paise = <u>1</u><u>1</u> Rupees <u>7</u><u>5</u> paise
k. 425 paise = <u>4</u> Rupees <u>2</u><u>5</u> paise
l. 9090paise = <u>9</u><u>0</u> Rupees <u>9</u><u>0</u> paise
Hope it's helpful!
Answer:
x^2 + 10x +25
Step-by-step explanation:
(x+5)
(X+5)
x^2 + 10x +25
Answer: 10
Step-by-step explanation:
Given : Jason has five coins in his pocket: a penny, a nickel, a dime, a quarter, and a half-dollar.
Since each coin has different value from others.
So the combination of any 3 coin will give a different amount.
We know that the combination of r things out of n things = 
Therefore , the combination of 3 coins out of 5 = 
Hence, the number of different sums of money can be formed using exactly three of the coins = 10