Answer:
Your answer is absolutely correct
Step-by-step explanation:
The work would be as follows:
![\int _0^{\sqrt{\pi }}4x^3\cos \left(x^2\right)dx,\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\=> 4\cdot \int _0^{\sqrt{\pi }}x^3\cos \left(x^2\right)dx\\\\\mathrm{Apply\:u-substitution:}\:u=x^2\\=> 4\cdot \int _0^{\pi }\frac{u\cos \left(u\right)}{2}du\\\\\mathrm{Apply\:Integration\:By\:Parts:}\:u=u,\:v'=\cos \left(u\right)\\=> 4\cdot \frac{1}{2}\left[u\sin \left(u\right)-\int \sin \left(u\right)du\right]^{\pi }_0\\\\](https://tex.z-dn.net/?f=%5Cint%20_0%5E%7B%5Csqrt%7B%5Cpi%20%7D%7D4x%5E3%5Ccos%20%5Cleft%28x%5E2%5Cright%29dx%2C%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%3D%3E%204%5Ccdot%20%5Cint%20_0%5E%7B%5Csqrt%7B%5Cpi%20%7D%7Dx%5E3%5Ccos%20%5Cleft%28x%5E2%5Cright%29dx%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Au-substitution%3A%7D%5C%3Au%3Dx%5E2%5C%5C%3D%3E%204%5Ccdot%20%5Cint%20_0%5E%7B%5Cpi%20%7D%5Cfrac%7Bu%5Ccos%20%5Cleft%28u%5Cright%29%7D%7B2%7Ddu%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3AIntegration%5C%3ABy%5C%3AParts%3A%7D%5C%3Au%3Du%2C%5C%3Av%27%3D%5Ccos%20%5Cleft%28u%5Cright%29%5C%5C%3D%3E%204%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29-%5Cint%20%5Csin%20%5Cleft%28u%5Cright%29du%5Cright%5D%5E%7B%5Cpi%20%7D_0%5C%5C%5C%5C)
![\int \sin \left(u\right)du=-\cos \left(u\right)\\=> 4\cdot \frac{1}{2}\left[u\sin \left(u\right)-\left(-\cos \left(u\right)\right)\right]^{\pi }_0\\\\\mathrm{Simplify\:}4\cdot \frac{1}{2}\left[u\sin \left(u\right)-\left(-\cos \left(u\right)\right)\right]^{\pi }_0:\quad 2\left[u\sin \left(u\right)+\cos \left(u\right)\right]^{\pi }_0\\\\\mathrm{Compute\:the\:boundaries}:\quad \left[u\sin \left(u\right)+\cos \left(u\right)\right]^{\pi }_0=-2\\=> 2(-2) = - 4](https://tex.z-dn.net/?f=%5Cint%20%5Csin%20%5Cleft%28u%5Cright%29du%3D-%5Ccos%20%5Cleft%28u%5Cright%29%5C%5C%3D%3E%204%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29-%5Cleft%28-%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%5C%5C%5C%5C%5Cmathrm%7BSimplify%5C%3A%7D4%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29-%5Cleft%28-%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%3A%5Cquad%202%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29%2B%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%5C%5C%5C%5C%5Cmathrm%7BCompute%5C%3Athe%5C%3Aboundaries%7D%3A%5Cquad%20%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29%2B%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%3D-2%5C%5C%3D%3E%202%28-2%29%20%3D%20-%204)
Hence proved that your solution is accurate.
Answer:
9/10
Step-by-step explanation:
to do this you would want to find a common denominator. then to divide fractions you would want to apply the keep change flip rule. keep the first fraction. change the division sign to multiplication and flip the fraction. then proceed to multiple. then you have your answer.
Answer:

Step-by-step explanation:
Answer:
5/12
Step-by-step explanation:
Divide both numbers by the least common multiple. In this case it's 5.
25/5=5
60/5=12