What is the recursive rule for this geometric sequence?
2 answers:
Answer:
C.
Step-by-step explanation:
We are given that
,..
We have to find the recursive formula rule for this geometric sequence.
Therefore, the recursive rule
Option C is true
The objective here is to find
(so called common ratio):
So assuming the first element of sequence is 3 (as you mentioned) we now can define the recursive rule for this geometric sequence:
You might be interested in
Yes the answer would be B
Answer:
the answer is A.) or (3 and one-half, negative 4)
600 620 640 660 680 700 !____!____!___!___!_____!
Answer:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Step-by-step explanation:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.