First lets see the pythagorean identities

So if we have to solve for sin theta , first we move cos theta to left side and then take square root to both sides, that is

Now we need to check the sign of sin theta
First we have to remember the sign of sin, cos , tan in the quadrants. In first quadrant , all are positive. In second quadrant, only sin and cosine are positive. In third quadrant , only tan and cot are positive and in the last quadrant , only cos and sec are positive.
So if theta is in second quadrant, then we have to positive sign but if theta is in third or fourth quadrant, then we have to use negative sign .
Answer:
area (A) =(9x+108)unit^2
perimeter (P) =(2x+42) units
Step-by-step explanation:
area(A) =length(l) × breadth(b)
perimeter(P) =2(l+ b) {which is sum of all sides}
so, l = 7+x+5 = (x+12) units and b = 9 units
now, A=(x+12) × 9 units^2
=(9×x + 12×9 ) units^2
Therefore,
A =(9x+108)unit^2
next, P=2{(x+12)+9}
=2(x+21)
Hence,
P=(2x+42) units
If you're using the app, try seeing this answer through your browser: brainly.com/question/2822258_______________
• Function: f(x) = 3x + 12.
A. Finding the inverse of f.
The composition of f with its inverse results in the identity function:
(f o g)(x) = x
f[ g(x) ] = x
3 · g(x) + 12 = x
3 · g(x) = x – 12
x – 12
g(x) = ⸺⸺
3
x g(x) = ⸺ – 4 <——— this is the inverse of f.
3________
B. Verifying that the composition of f and g gives us the identity function:
•

![\mathsf{=f\big[g(x)\big]}\\\\\\ \mathsf{=3\cdot \left(\dfrac{x}{3}-4\right)+12}\\\\\\ \mathsf{=\diagup\hspace{-7}3\cdot \dfrac{x}{\diagup\hspace{-7}3}-3\cdot 4+12}\\\\\\ \mathsf{=x-12+12}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Df%5Cbig%5Bg%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D3%5Ccdot%20%5Cleft%28%5Cdfrac%7Bx%7D%7B3%7D-4%5Cright%29%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%5Cdfrac%7Bx%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-3%5Ccdot%204%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx-12%2B12%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
and also
•

![\mathsf{=g\big[f(x)\big]}\\\\\\ \mathsf{=\dfrac{f(x)}{3}-4}\\\\\\ \mathsf{=\dfrac{3x+12}{3}-4}\\\\\\ \mathsf{=\dfrac{\diagup\hspace{-7}3\cdot (x+4)}{\diagup\hspace{-7}3}-4}\\\\\\ \mathsf{=x+4-4}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Dg%5Cbig%5Bf%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7Bf%28x%29%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7B3x%2B12%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdfrac%7B%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%28x%2B4%29%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%2B4-4%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
________
C. Since f and g are inverse, then
f(g(– 2))
= (f o g)(– 2)
=
– 2 <span>✔
</span>
• Call h the compositon of f and g. So,
h(x) = (f o g)(x)
h(x) = x
As you can see above, there is no restriction for h. Therefore, the domain of h is R (all real numbers).
I hope this helps. =)
Answer:
57 °C.
Step-by-step explanation:
The formula that is used to convert temperature from Celsius (C) to Fahrenheit (F) is given by :
...(1)
If T = 134° F, we need to convert the temperature in Celsius.
Put F = 134, in equation (1)

So, the temperature on that day is 57 °C.