Minerals are identified according to their properties. One of these properties is their breaking tendency: <em>cleavage</em><em> or </em><em>fracture</em>.<em> Cleavage: Calcite, mica, muscovita, pyroxene. Fracture: Quartz, Asbestos, Limestone.</em>
<u><em>Note</em></u><em>: Since I do not know which your 10 minerals are, I will provide examples of each type according to the breaking tendency.</em>
Many properties of minerals are used to identify them, such as <em>color, density, hardness,</em> among others. In this case, we are talking about their <u>breaking tendency.</u>
<h3 /><h3>How do minerals break?</h3><h3 />
- Minerals can cleave or fracture.
- A type of mineral breaks always in the same, and this is why the breaking tendency is useful to identify them.
<h3 />
<u>- Cleavage</u>
- The mineral breaks in flat smooth planes.
- Cleavage direction and smoothness of surfaces are significant when identifying.
<u>- Fracture</u>
- The mineral break in irregular planes.
- In these minerals, there is no particular breaking direction.
<h2 /><h3>Examples</h3>
<u>- Cleavage</u>
<u>- Fracture</u>
You can learn more about fracture and cleavage at
brainly.com/question/22061284
brainly.com/question/2311110
Classifying Fingerprints. Once the fingerprints are taken and labeled, forensic scientists use a classification system to identify them. The three basic fingerprint patterns are Whorl, Arch, and Loop. There are more complex classification systems that further break down the pattern to plain arches or tented arches. Hope this helps
2. The evolutionary process through which new species emerge