Answer:
a) The estimates for the solutions of
are
and
.
b) The estimates for the solutions of
are
and
Step-by-step explanation:
From image we get a graphical representation of the second-order polynomial
, where
is related to the horizontal axis of the Cartesian plane, whereas
is related to the vertical axis of this plane. Now we proceed to estimate the solutions for each case:
a) 
There are two approximate solutions according to the graph, which are marked by red circles in the image attached below:
,
b) 
There are two approximate solutions according to the graph, which are marked by red circles in the image attached below:
,
Answer: <em>33 square feet</em>
Step-by-step explanation:
<em>First, let's take the area of the rectangle shown here which is 6ft long and 4ft wide</em>
<em>6x4=24</em>
<em>Now let's take the area of the square which is 3ft long and 3ft wide</em>
<em>3x3=9</em>
<em>Now add 24 and 9 for the total area</em>
<em>24+9=</em><em>33 square feet</em>
Given the equation:

We will use the following rule to find the solution to the equation:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
From the given equation: a = 6, b = 7, c = 2
So,
![\begin{gathered} x=\frac{-7\pm\sqrt[]{7^2-4\cdot6\cdot2}}{2\cdot6}=\frac{-7\pm\sqrt[]{1}}{12}=\frac{-7\pm1}{12} \\ x=\frac{-7-1}{12}=-\frac{8}{12}=-\frac{2}{3} \\ or,x=\frac{-7+1}{12}=-\frac{6}{12}=-\frac{1}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-7%5Cpm%5Csqrt%5B%5D%7B7%5E2-4%5Ccdot6%5Ccdot2%7D%7D%7B2%5Ccdot6%7D%3D%5Cfrac%7B-7%5Cpm%5Csqrt%5B%5D%7B1%7D%7D%7B12%7D%3D%5Cfrac%7B-7%5Cpm1%7D%7B12%7D%20%5C%5C%20x%3D%5Cfrac%7B-7-1%7D%7B12%7D%3D-%5Cfrac%7B8%7D%7B12%7D%3D-%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%20or%2Cx%3D%5Cfrac%7B-7%2B1%7D%7B12%7D%3D-%5Cfrac%7B6%7D%7B12%7D%3D-%5Cfrac%7B1%7D%7B2%7D%20%5Cend%7Bgathered%7D)
So, the answer will be option B) x = -1/2, -2/3