Answer: By using EDL(Euclid's Division Lemma), the answer we get is 14
so,
42 = 28(1) + 14
28 = 14(2) + 0
therefore, HCF(or greatest common factor) = 14
This is a great question!
To determine the probability with which two sweets are not the same, you would have to subtract the probability with which two sweets are the same from 1. That would only be possible if she chose 2 liquorice sweets, 5 mint sweets and 3 humburgs -

As you can see, the first time you were to choose a Liquorice, there would be 12 out of the 20 sweets present. After taking that out however, there would be respectively 11 Liquorice out of 19 remaining. Apply the same concept to each of the other sweets -

____
Calculate the probability of drawing 2 of each, add them together and subtract from one to determine the probability that two sweets will not be the same type of sweet!

<u><em>Thus, the probability should be 111 / 190</em></u>
Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
Answer:
Step-by-step explanation: