Answer:
Step-by-step explanation:
Given:
u = 1, 0, -4
In unit vector notation,
u = i + 0j - 4k
Now, to get all unit vectors that are orthogonal to vector u, remember that two vectors are orthogonal if their dot product is zero.
If v = v₁ i + v₂ j + v₃ k is one of those vectors that are orthogonal to u, then
u. v = 0 [<em>substitute for the values of u and v</em>]
=> (i + 0j - 4k) . (v₁ i + v₂ j + v₃ k) = 0 [<em>simplify</em>]
=> v₁ + 0 - 4v₃ = 0
=> v₁ = 4v₃
Plug in the value of v₁ = 4v₃ into vector v as follows
v = 4v₃ i + v₂ j + v₃ k -------------(i)
Equation (i) is the generalized form of all vectors that will be orthogonal to vector u
Now,
Get the generalized unit vector by dividing the equation (i) by the magnitude of the generalized vector form. i.e

Where;
|v| = 
|v| = 
= 
This is the general form of all unit vectors that are orthogonal to vector u
where v₂ and v₃ are non-zero arbitrary real numbers.
Answer:
i do only 1 part
hope my answer is helpful to you
Dimensional Analysis,
appears often in Chemistry.
The number of unique cookout trays are possible is 500
<h3>How many unique cookout trays are possible?</h3>
The given parameters are:
Main items = 10
Sides = 10
Drinks = 5
The number of unique cookout trays are possible is
Cookout trays = Main items * Sides * Drinks
So, we have:
Cookout trays = 10 * 10 * 5
Evaluate
Cookout trays = 500
Hence, the number of unique cookout trays are possible is 500
Read more about combination at:
brainly.com/question/11732255
#SPJ4