Is the x a multiplacation sign?
check the picture below.
so, when we have a line from a 90° angle running perpendicular to the opposite side, like in this case, we end up with three similar triangles, a large one containing the other two, a medium and a small one.
now, using the sides proportions as you see there, of the small and large one, we get that much.
Answer: Downhill:10mph Uphill:5mph
Step-by-step explanation:
We are looking for Dennis’s downhill speed.
Let
r=
Dennis’s downhill speed.
His uphill speed is
5
miles per hour slower.
Let
r−5=
Dennis’s uphill speed.
Enter the rates into the chart. The distance is the same in both directions,
20
miles.
Since
D=rt
, we solve for
t
and get
t=
D
r
.
We divide the distance by the rate in each row and place the expression in the time column.
Rate
×
Time
=
Distance
Downhill
r
20
r
20
Uphill
r−5
20
r−5
20
Write a word sentence about the time.
The total time traveled was
6
hours.
Translate the sentence to get the equation.
20
r
+
20
r−5
=6
Solve.
20(r−5)+20(r)
40r−100
0
0
0
=
=
=
=
=
6(r)(r−5)
6
r
2
−30r
6
r
2
−70r+100
2(3
r
2
−35r+50)
2(3r−5)(r−10)
Use the Zero Product Property.
(r−10)=0
r=10
(3r−5)=0
r=
5
3
The solution
5
3
is unreasonable because
5
3
−5=−
10
3
and his uphill speed cannot be negative. So, Dennis's downhill speed is
10
mph and his uphill speed is
10−5=5
mph.
Check. Is
10
mph a reasonable speed for biking downhill? Yes.
Downhill:
10 mph
5 mph⋅
20 miles
5 mph
=20 miles
Uphill:
10−5=5 mph
(10−5) mph⋅
20 miles
10−5 mph
=20 miles
The total time traveled was
6
hours.
Dennis’ downhill speed was
10
mph and his uphill speed was
5
mph.
The answer is 56! How you do this, is you take 80, and you multiply it by 7. Then you divide that answer by 10. Then you have your answer! I’m really bad at math but I do know how to do that!