Answer:
2
Step-by-step explanation:
The GCF of 10 and 46 is 2. I hope this helps.
(a ± b)² = a² ± 2ab + b² . . . . . . . (signs match)
The middle term is twice the product of the roots of the other two terms. This tells you the terms of the binomial are the square roots of the end terms.
The sign in the binomial will match the sign of the "2ab" term. The order of terms in the binomial doesn't matter. (a±b)² = (b±a)² when signs match.
7 x
times 14.6 x
<em>Multiply 7 and 14.6 and add exponents</em>
Final Answer 102.2 and 
hope that helps :)
Answer:
a) F
b) B, E, D
Step-by-step explanation:
a) The segment with the greatest gradient has the largest change in y-values per unit change in x-values
From the given option, the rate of change of the <em>y </em>to the<em> </em>x-values of B = the gradient = (4 units)/(2 units) = 2
The gradient of F = (-3units)/(1 unit) = -3
The gradient of A = 4/4 = 1
The gradient of C = -2/5
The gradient of D = 2/6 = 1/3
The gradient of E = 3/4
The segment with the greatest gradient is F
b) The steepest segment has the higher gradient
From their calculated we have;
The gradient of segment B = 2 therefore, B is steeper than E that has a gradient of 3/4, and E is steeper than D, as the gradient of D = 1/3
Therefore, we have;
B, E, D.
A. The
y-intercept (b) of a linear equation is obtained when x = 0. Therefore from the
given table,
y - intercept
= 8
Since at
time zero the displacement is 8 ft, this means that the horse was already
outside the barn initially.
B. The
average rate of change of the function represents the slope of the linear
equation (m). This can be calculated using the formula:
average rate
of change = m = (y2 – y1) / (x2 – x1)
m = (158 –
58) / (3 – 1)
m = 50
<span>C. Since we have determine the y-intercept and
the slope, we can formulate the linear equation:</span>
y = m x + b
y = 50 x + 8
The domain
is the value of x. When y = 508, x is equivalent to
508 = 50 x +
8
<span>x = 10 hrs</span>