The difference (subtraction) of a number (x) squared (²) and the number (x) is (=) one less than (- 1) four times (4 ·) the number (x)
x² - x = 4x - 1
In a hand of 5 cards, you want 4 of them to be of the same rank, and the fifth can be any of the remaining 48 cards. So if the rank of the 4-of-a-kind is fixed, there are
possible hands. To account for any choice of rank, we choose 1 of the 13 possible ranks and multiply this count by
. So there are 624 possible hands containing a 4-of-a-kind. Hence A occurs with probability

There are 4 aces in the deck. If exactly 1 occurs in the hand, the remaining 4 cards can be any of the remaining 48 non-ace cards, contributing
possible hands. Exactly 2 aces are drawn in
hands. And so on. This gives a total of

possible hands containing at least 1 ace, and hence B occurs with probability

The product of these probability is approximately 0.000082.
A and B are independent if the probability of both events occurring simultaneously is the same as the above probability, i.e.
. This happens if
- the hand has 4 aces and 1 non-ace, or
- the hand has a non-ace 4-of-a-kind and 1 ace
The above "sub-events" are mutually exclusive and share no overlap. There are 48 possible non-aces to choose from, so the first sub-event consists of 48 possible hands. There are 12 non-ace 4-of-a-kinds and 4 choices of ace for the fifth card, so the second sub-event has a total of 12*4 = 48 possible hands. So
consists of 96 possible hands, which occurs with probability

and so the events A and B are NOT independent.
Answer:
There are now 6.5 ounces in the new bag.
Step-by-step explanation:
To solve this question, take 30% of 5 and add it to the original amount of 5
30% = 0.30
5 * 0.30 = 1.5
5 + 1.5 = 6.5 ounces of candy.
Hope this helps!
Answer:
Only 16 problems correct
Step-by-step explanation:
Well I thought that since 80% is 4/5 then I should do 20 divided by 5 which will get me 4 and since I'm doing 4/5 I should go all the way up to 80% of 20 which will get me 16.
I'm not making that much sense but
Hope this helps :)