Answer:
Ptolemy made geocentric model of the solar system using epicycles
Explanation:
Ptolemy made geocentric model of the solar system using epicycles.
This model accounted for the apparent motions of the planets in a very direct way, by assuming that each planet moved on a small circle, called an epicycle, which moved on a larger circle, called a deferent.
Therefore, Ptolemy is the answer.
Answer:
ΔU = -70 J
Explanation:
ΔU = Q − W
where ΔU is the change in internal energy,
Q is the heat absorbed by the system,
and W is the work done by the system (on the surroundings).
30 J of thermal energy is released, so Q = -30 J.
40 J of work is done by the system, so W = 40 J.
Therefore, the change in internal energy is:
ΔU = -30 J − 40 J
ΔU = -70 J
Answer:
1. 80,000 Pa
2. 11.3 m/s
3. 12.5 m/s
Explanation:
<u>Question 1</u>
Pressure, 
Where h is the height that water is to reach, g is gravitational constant and
is the density, in this case, we assume
of pure water as 
Assuming 
P=8*10*1000=80000 Pa
<u>Question 2</u>
Pressure can also be found by the formula
where v is the velocity
Equating the new formula of pressure to the formula used in question 1 above

Notice that
is common hence

Making V the subject of the formula


In this case, h=8-1.6=6.4m and taking g as 10 m/s^{2}

Rounding off to 1 decimal place
v=11.3 m/s
<u>Question 3</u>
As already illustrated

Taking g as 9.8 and h now is 8m

v=12.52198067
Rounding off to 1 decimal place
v=12.5 m/s
Velocities of their center of mass after collisions are found by the following formula as shown in the image:
<h3>What are elastic collisions?</h3>
- An elastic collision is one in which there is no energy lost during the impact. A moderately inelastic collision occurs when some energy is wasted yet the items do not cling together. The maximum amount of energy is wasted when the objects collide in a perfectly inelastic impact. The kinetic energy doesn't change.
- It may be two dimensions or one dimension. Because there will always be some energy exchange, no matter how tiny, totally elastic collision is not conceivable in the real world.
- While the overall system's linear momentum does not change, the individual momenta of the participating components do, and because these changes are equal and opposite in size and cancel each other out, the initial energy is conserved.
To learn more about Elastic collisions refer to:
brainly.com/question/2356330
#SPJ4
Answer:
Explanation:
Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .
This force provides centripetal force for creation of circular motion. If r be the radius of the circular path
Bev = mv² / r
r = mv / Be
2 ) If an electron is accelerated by an electric field created by potential difference V then electric field
= V / d where d is distance between two points having potential difference v .
force on charged particle
electric field x charge
= V /d x e
work done by field
= force x distance
= V /d x e x d
V e
This is equal to kinetic energy created
V e = 1/2 mv²
= 1/2 m (r²B²e² / m² )
V = r²B²e/ 2 m
e / m = 2 V/ r²B²
3 )
B = 
In Helmholtz coils , distance between coil is equal to R so Z = R/2
B = 
For N turns of coil and total field due to two coils
B = 
= 
= 9.0 x 10^-7 NI/R