The vertex form of the equation of a parabola is given by

where (h, k) is the vertex of the parabola.
Given that the vertex of the parabola is (-12, -2), the equation of the parabola is given by

For a = 1,

<span>The
parabola whose minimum is at (−12,−2) is given by the equation

, where a = 24 and b = 112.</span>
To figure out the difference you would subtract 294 from 453.
So 453-294=159
=
(
−
2
y
)
(
2
)
+
6
y
−
1
+
−
1
(
(
−
4
y
)
(
2
)
−
3
y
+
9
)
=
(
−
2
y
)
(
2
)
+
6
y
+
−
1
+
−
1
(
(
−
4
y
)
(
2
)
)
+
−
1
(
−
3
y
)
+
(
−
1
)
(
9
)
=
(
−
2
y
)
(
2
)
+
6
y
+
−
1
+
8
y
+
3
y
+
−
9
=
−
4
y
+
6
y
+
−
1
+
8
y
+
3
y
+
−
9
Combine Like Terms:
=
−
4
y
+
6
y
+
−
1
+
8
y
+
3
y
+
−
9
=
(
−
4
y
+
6
y
+
8
y
+
3
y
)
+
(
−
1
+
−
9
)
=
13
y
+
−
10
Answer: C
Step-by-step explanation:
2x+6