Lay her on the scale that would work
Answer:
25% of the offspring will have red skin
Explanation:
B b
B BB Bb
-----------|-----------
b Bb bb
So basically, if only 1 out of 4 of the punnet squares has both recessive alleles for red skin, then that makes it being 25% of offspring would have red skin.
Put me as brainliest plss!!
I think that the answer is d
Answer:
False
Explanation:
Gregor Mendel, who was referred to as the FATHER OF GENETICS, discovered the principles that governs heredity. One of those principles which he called LAW OF INDEPENDENT ASSORTMENT states that the alleles of a gene randomly segregates into gametes independently of the alleles of another gene. This means that during gamete formation (meiosis), the separation of the alleles of one gene doesn't affect the separation of the alleles of another gene.
Mendel discovered this principle when he worked with two genes that was responsible for two distinct characters. Hence, in a cell that contains two genes responsible for two different characters in the organism, independent assortment will always occur during gamete formation. Although, in an organism that is homozygous for both traits (AABB or aabb), only one type of allelic combination will be produced in the gamete. However, the alleles will still randomly align and separate independently of one another during Metaphase and Anaphase stages of meiosis.
Answer:
Explanation:
Vascular plants have tubelike structures that carry water, nutrients, and other substances throughout the plant. Nonvascular plants do not have these tubelike structures and use other ways to move water and substances.
Vascular plants are said to have a true stem, leaves, and roots due to the presence of vascular tissues. Non-vascular plants do not have true roots, stems, or leaves and the tissues present are the least specialized forms of tissue. Some examples of vascular plants include maize, mustard, rose, cycad, ferns, clubmosses, grasses. Some examples of non-vascular plants include moss, algae, liverwort, and hornwort.
How vascular plants work through osmosis
The xylem of vascular plants consists of dead cells placed end to end that form tunnels through which water and minerals move upward from the roots to the rest of the plant. Through the xylem vessels, water enters and leaves cells through osmosis.
How non vascular plants work through osmosis
Because non vascular plants do not have the xylem and phloem ystem, they absorb water right into their cells through their leaves when it rains or when dew falls. Internal cells get their water by passive osmosis. While, they use rhizoids to transport nutrients and minerals.