Learn by looking at others do something
Answer:
The answers are the second and fourth ones.
Explanation:
I did the assignment.
The genetic change causes alterations in only one or a few nucleotide bases in known as mutation.
A mutation is a change in a brief section of a genome's nucleotide sequence. Another frequently replaces one nucleotide in point mutations; other changes involve the insertion or deletion of one or more nucleotides.
Errors in DNA replication or the harmful effects of mutagens, such as chemicals and radiation, which react with DNA and alter the architecture of individual nucleotides, are the leading causes of mutations.
DNA repair enzymes are present in all cells and work to reduce the frequency of mutations. These enzymes reduce genetic information loss, double-strand break formation, and DNA crosslinking by repairing DNA damage.
To learn more about mutation click here
brainly.com/question/13923224
#SPJ4
Answer:
See Below.
Explanation:
The key word here is <em>net. </em>The net movement has reached zero when a system is in equilibrium but there are still motion's going back and forth due to statistics and just random brownian motion.
Think of it this way, if there are 100 people walking forwards in a crowd but 2 are moving against the crowd, the net movement is still forwards because the bulk of people are going in that direction. However, there are still 2 people moving against.
Same here, if we are talking about a diffusion, let's say in the case of osmosis, if most of the solute is moving across a membrane then we'd say its net direction is that way but that doesn't mean that there aren't processes happening in the other direction. Water molecules in osmosis mostly diffuse, chemically speaking (because you can say this biologically in a different way), from the probability of water molecules colliding with each other and passing the membrane so even if there is a net movement in a certain way their random motion can make them go to the other side just as well. If the fact that motion stops at equilibrium were the case a lot of systems, both chemical and biological, would not exist as we know it.
Think net = bulk <u>NOT</u> <em>total</em> or <em>entire.</em>
Answer:
Dimetrodon (/daɪˈmiːtrədɒn/ (About this soundlisten)[1] or /daɪˈmɛtrədɒn/,[2] meaning "two measures of teeth") is an extinct genus of non-mammalian synapsid that lived during the Cisuralian (Early Permian), around 295–272 million years ago (Ma).[3][4][5] It is a member of the family Sphenacodontidae. The most prominent feature of Dimetrodon is the large neural spine sail on its back formed by elongated spines extending from the vertebrae. It walked on four legs and had a tall, curved skull with large teeth of different sizes set along the jaws. Most fossils have been found in southwestern United States, the majority coming from a geological deposit called the Red Beds of Texas and Oklahoma. More recently, fossils have been found in Germany. Over a dozen species have been named since the genus was first erected in 1878.
Explanation:
Dimetrodon is often mistaken for a dinosaur or as a contemporary of dinosaurs in popular culture, but it became extinct some 40 million years before the first appearance of dinosaurs. Reptile-like in appearance and physiology, Dimetrodon is nevertheless more closely related to mammals than to modern reptiles, though it is not a direct ancestor of mammals.[4] Dimetrodon is assigned to the "non-mammalian synapsids", a group traditionally called "mammal-like reptiles".[4] This groups Dimetrodon together with mammals in a clade (evolutionary group) called Synapsida, while placing dinosaurs, reptiles and birds in a separate clade, Sauropsida. Single openings in the skull behind each eye, known as temporal fenestrae, and other skull features distinguish Dimetrodon and mammals from most of the earliest sauropsids.