If you start at -40 you need 40 to get to 0 then add 40 to get there so B probly or C D
The bottom right quadrant.
Answer:
Step-by-step explanation:
y=(x+5)2−1
Use the vertex form,
y=a(x−h)2+k, to determine the values of a, h, and .a=1h=−5k=−1Find the vertex(h,k(−5,−1)
Answer:
130
Step-by-step explanation:
We are given the following system of equations

From this system, we can create the following coefficient matrix
![\left[\begin{array}{ccc}4&3&2\\-3&1&5\\-1&-4&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%263%262%5C%5C-3%261%265%5C%5C-1%26-4%263%5Cend%7Barray%7D%5Cright%5D)
Let us go over a method of finding the determinant of a 3x3 matrix real quick.
![\left[\begin{array}{ccc}a&b&c\\d&e&f\\h&i&j\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%26c%5C%5Cd%26e%26f%5C%5Ch%26i%26j%5Cend%7Barray%7D%5Cright%5D)
If this is our 3x3 matrix, the determinant will be as follows
![a*det(\left[\begin{array}{ccc}e&f\\i&j\\\end{array}\right]) -b*det(\left[\begin{array}{ccc}d&f\\h&j\\\end{array}\right]) +c*det(\left[\begin{array}{ccc}d&e\\h&i\\\end{array}\right] )](https://tex.z-dn.net/?f=a%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7De%26f%5C%5Ci%26j%5C%5C%5Cend%7Barray%7D%5Cright%5D%29%20-b%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dd%26f%5C%5Ch%26j%5C%5C%5Cend%7Barray%7D%5Cright%5D%29%20%2Bc%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dd%26e%5C%5Ch%26i%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%29)
Which is the same thing as

Now back to our original system
![\left[\begin{array}{ccc}4&3&2\\-3&1&5\\-1&-4&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%263%262%5C%5C-3%261%265%5C%5C-1%26-4%263%5Cend%7Barray%7D%5Cright%5D)
Using this same formula, we can find the determinant
![4*([1*3]-[-4*5])-3([-3*3]-[-1*5])+2([-3*(-4)]-[-1*1])\\\\4(3+20)-3(-9+5)+2(12+1)\\\\4(23)-3(-4)+2(13)\\\\92+12+26=130](https://tex.z-dn.net/?f=4%2A%28%5B1%2A3%5D-%5B-4%2A5%5D%29-3%28%5B-3%2A3%5D-%5B-1%2A5%5D%29%2B2%28%5B-3%2A%28-4%29%5D-%5B-1%2A1%5D%29%5C%5C%5C%5C4%283%2B20%29-3%28-9%2B5%29%2B2%2812%2B1%29%5C%5C%5C%5C4%2823%29-3%28-4%29%2B2%2813%29%5C%5C%5C%5C92%2B12%2B26%3D130)