Please provide an image. But just for reference, a plant cell's main organelles are the cell wall, cell membrane, large water vacuole, nucleus, mitochondria, cloroplast, lysosme, golgi body, and some other organelles that may also be found in animal cells.
Answer:
here's your answer
Explanation:
the estimated maximum energy efficiency of photosynthesis is the energy stored per mole of oxygen evolved, 117/450, or 26 percent.
Consequently, plants can at best absorb only about 34 percent of the incident sunlight. The actual percentage of solar energy stored by plants is much less than the maximum energy efficiency of photosynthesis. An agricultural crop in which the biomass (total dry weight) stores as much as 1 percent of total solar energy received on an annual areawide basis is exceptional, although a few cases of higher yields (perhaps as much as 3.5 percent in sugarcane) have been reported. There are several reasons for this difference between the predicted maximum efficiency of photosynthesis and the actual energy stored in biomass. First, more than half of the incident sunlight is composed of wavelengths too long to be absorbed, and some of the remainder is reflected or lost to the leaves
I believe it is C.) Tasting a solution you think is edible after creating it in the lab.
I could be wrong though.
Answer:
The correct answer is : A.
Explanation:
- This is because of the following reasons:
- Escherichia coli is a bacteria and hence is a prokaryote.
- The cloning of human (eukaryote) genes is done to obtain in-vitro protein expression which are to be used a pharmaceutical compounds.
- Although the phenomenon of Central Dogma takes place in both Prokaryotes and Eukaryotes, the mechanism is very different.
- Some of the differences includes:
- Eukaryotic genes contain certain non-protein encoding sequences called the Intron sequences which needs to be removed from the transcribed mature mRNA by Spliceosome. This phenomenon is absent in prokaryotes as they do not possess introns. Hence, proper processing of eukaryotic mRNA is not possible in prokaryotes.
- The mature eukaryotic mRNA has a 5' cap and 3' polyadenylated tail which is added by a capping enzyme and a poly-A polymerase enzyme to increase their stability. This will not be possible in a prokaryote as they lack these enzymes.
- The translation of membrane proteins and secretory proteins is carried on by the ribosomes bound to the endoplasmic reticulum. This structure is absent in prokaryotes, hence they will be unable to produce a proper polypeptide sequence.
- Finally, the eukaryotic proteins undergo various modifications after formation, like methylation, acetylation, etc. These reactions cannot be carried out in a prokaryote as they lack the respective enzymes.
- Hence, we see a properly folded functional eukaryotic protein cannot be produced in a prokaryote.
The term cell was coined by Robert Hooke. The studies he was building of was the work of Van Leeuwenhoek.