Answer:
(of a metal) able to be drawn out into a thin wire.
able to be deformed without losing toughness; pliable, not brittle.
Note:
Please mark as Brainliest! <3
Since all cells in our body contain DNA, there are lots of places for mutations to occur; however, some mutations cannot be passed on to offspring and do not matter for evolution. Somatic mutations<span> occur in non-reproductive cells and won't be passed onto offspring. For example, the golden color on half of this Red Delicious apple was caused by a somatic mutation. Its seeds will not carry the mutation.
</span>
A single germ line mutation can have a range of effects:
<span><span>No change occurs in phenotype.
Some mutations don't have any noticeable effect on the phenotype of an organism. This can happen in many situations: perhaps the mutation occurs in a stretch of DNA with no function, or perhaps the mutation occurs in a protein-coding region, but ends up not affecting the amino acid sequence of the protein.</span><span>Small change occurs in phenotype.
A single mutation caused this cat's ears to curl backwards slightly.</span><span>Big change occurs in phenotype.
Some really important phenotypic changes, like DDT resistance in insects are sometimes caused by single mutations. A single mutation can also have strong negative effects for the organism. Mutations that cause the death of an organism are called lethals — and it doesn't get more negative than that.</span></span>
Answer:
Step 1
The plant takes in carbon dioxide in the atmosphere through the stomata on its leaves. It is worth noting that there are some stomata on the stems as well.
Step 2
Water gets into the plant mainly through the roots and finds its way to the leaves, where photosynthesis occurs. Plant roots are specially designed to draw water from the ground and transport it to the plant leaves through the stem.
Step 3
Chlorophyll, the green coloring matter of the leaf, traps the energy from sunlight as it shines on the leaf. It is worth noting that it is chlorophyll that gives the leaf its green color.
Step 4
The solar energy is used to break water down into hydrogen and oxygen. Then hydrogen is combined with carbon dioxide to make sugar, which is food for the plant. Oxygen is released as a byproduct through the stomata.
Explanation:
Carbohydrates are organic compounds that are organized as ring structures and are always composed of the elements carbon, hydrogen, and oxygen. Carbohydrates are truly hydrates of carbon because the ratio of hydrogen atoms to oxygen atoms is always nearly 2:1, as in H2O.
They both respire. Plant and animals cell use generate ATP from
glucose to provide energy for their biochemical process. <span> </span>This respiration occurs in the mitochondria which
<span>are</span> present in both cells. These
biochemical <span>processes</span> include transport
of nutrient in the plants and locomotion in the animals.