The answer is 26 because I said so I took this 5 years ago I’m in college now
Intensive properties and extensive properties are types of physical properties of matter. The terms intensive and extensive were first described by physical chemist and physicist Richard C. Tolman in 1917. Here's a look at what intensive and extensive properties are, examples of them, and how to tell them apart.
Intensive Properties
Intensive properties are bulk properties, which means they do not depend on the amount of matter that is present. Examples of intensive properties include:
Boiling point
Density
State of matter
Color
Melting point
Odor
Temperature
Refractive Index
Luster
Hardness
Ductility
Malleability
Intensive properties can be used to help identify a sample because these characteristics do not depend on the amount of sample, nor do they change according to conditions.
Extensive Properties
Extensive properties do depend on the amount of matter that is present. An extensive property is considered additive for subsystems. Examples of extensive properties include:
Volume
Mass
Size
Weight
Length
The ratio between two extensive properties is an intensive property. For example, mass and volume are extensive properties, but their ratio (density) is an intensive property of matter.
While extensive properties are great for describing a sample, they aren't very helpful identifying it because they can change according to sample size or conditions.
Way to Tell Intensive and Extensive Properties Apart
One easy way to tell whether a physical property is intensive or extensive is to take two identical samples of a substance and put them together. If this doubles the property (e.g., twice the mass, twice as long), it's an extensive property. If the property is unchanged by altering the sample size, it's an intensive property.
I used to hate fractions. But in time, you learn to love them. This is because there's a big difference between fractions and decimals, even though when you divide the actual fraction it comes out to a decimal. Decimals go on and on sometimes, and it would be impossible to write out all those numbers, especially when taking a timed test, for example. Fractions, in this case, would be much more useful (as long as you know how to use them to your advantage). Fractions are basically all those decimal numbers wrapped up into a single, simple division. It makes the outcome of your answer much more accurate than if you estimate every decimal you get throughout a math problem. The more you estimate throughout the problem-solving process, the less accurate your final answer will be. Hence why teachers will usually tell you to estimate when you're putting down the final answer. Fractions are complex at times, so it may be easier to use them in decimal form for certain situations (especially if the decimal form is short and sweet). A world without fractions will result in many, many inaccurate situations involving mathematical knowledge.
Answer:

Step-by-step explanation:
Let:

This is and exact equation, because:

So, define f(x,y) such that:

The solution will be given by:

Where C1 is an arbitrary constant
Integrate
with respect to x in order to find f(x,y):

Where g(y) is an arbitrary function of y.
Differentiate f(x,y) with respect to y in order to find g(y):

Substitute into 

Integrate
with respect to y:

Substitute g(y) into f(x,y):

The solution is f(x,y)=C1

Solving y using quadratic formula:

Answers 3 and 4! since there is a negative power, that’s the only time the 0’s are added to the front :)