Answer:
do you want us to answer all of them?
Step-by-step explanation:
Answer:
The slope-intercept form of the equation: y = 0.5x + 5
The slope: m = 0.5
The y-intercept: b = 5
Step-by-step explanation:
Slope-intercept form is y = mx + b, where m is the slope and b is y-intecept
4y = 2x + 20 {divide both sides by 4}
y = 0.5x + 5 ⇒ m = 0.5 and b = 5
Answer:
Step-by-step explanation:
All 3 sides need to be congruent.
L = Length
W = Width
L x W = area
Length = 2w
Lets find the width by solving for w.
2w + w = 36
3w = 36
3w/3 = 36 / 3
w = 12
So
L = 2 x 12 = 24
W = 12
L X W = area
24 x 12 = 288 cm^2
Answer:
D = L/k
Step-by-step explanation:
Since A represents the amount of litter present in grams per square meter as a function of time in years, the net rate of litter present is
dA/dt = in flow - out flow
Since litter falls at a constant rate of L grams per square meter per year, in flow = L
Since litter decays at a constant proportional rate of k per year, the total amount of litter decay per square meter per year is A × k = Ak = out flow
So,
dA/dt = in flow - out flow
dA/dt = L - Ak
Separating the variables, we have
dA/(L - Ak) = dt
Integrating, we have
∫-kdA/-k(L - Ak) = ∫dt
1/k∫-kdA/(L - Ak) = ∫dt
1/k㏑(L - Ak) = t + C
㏑(L - Ak) = kt + kC
㏑(L - Ak) = kt + C' (C' = kC)
taking exponents of both sides, we have
When t = 0, A(0) = 0 (since the forest floor is initially clear)
So, D = R - A =
when t = 0(at initial time), the initial value of D =