Answer:
The answer is 8
Step-by-step explanation:
Plug -2 in for x. The double-negative inside the parenthesis makes it positive, then do the exponent.
Answer:
- Cos 45=6/x
x=6/cos 45=6√2
x=6√2
tan 45=y/6
y=tan45 ×6
y=6
2.
sin 60=y/10
y=sin60×10
y=5√3
again
Cos 60=x/10
x=½×10
x=5
3.
Sin 45=x/5
x=1/√2×5 or
x=5√2/2
again
y=5√2/2 or 5/√2[base angle of right angled isosceles triangle]
4.
Sin 30=8/x
½×x=8
x=8*2
x=16
again
cos 30= y/x
√3/2×16=y
y=8√3
5.
sin 60=7/x
x=7/[√3/2]
x=14/√3 or 14√3/3
again
cos 60=y/x
½×14√3/3=y
7√3/2=y
y=7√3/2
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u>
<u>S</u><u>i</u><u>n</u><u> </u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>=</u><u>p</u><u>e</u><u>r</u><u>p</u><u>e</u><u>n</u><u>d</u><u>i</u><u>c</u><u>u</u><u>l</u><u>a</u><u>r</u><u>/</u><u>h</u><u>y</u><u>p</u><u>o</u><u>t</u><u>e</u><u>n</u><u>u</u><u>s</u><u>e</u>
<u>C</u><u>o</u><u>s</u><u> </u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>=</u><u>b</u><u>a</u><u>s</u><u>e</u><u>/</u><u>h</u><u>y</u><u>p</u><u>o</u><u>t</u><u>e</u><u>n</u><u>u</u><u>s</u><u>e</u>
<u>T</u><u>a</u><u>n</u><u> </u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>=</u><u>p</u><u>e</u><u>r</u><u>p</u><u>e</u><u>n</u><u>d</u><u>i</u><u>c</u><u>u</u><u>l</u><u>a</u><u>r</u><u> </u><u>/</u><u>b</u><u>a</u><u>s</u><u>e</u>
Using Pythagoras in the first question
c=

which is approximately 16.5
for the second question
we also use Pythagoras

Answer:
TRUE: A, B, C
False: D
Step-by-step explanation:
A full circle of 360° has a radian measure of 2π radians. The relationship is proportional, so π radians is 180°.
__
A. An angle that measures π/4 radians also measures 45°. TRUE
45° × π/180° radians = π/4 radians
B. An angle that measures 180° also measures π radians. TRUE
180° × π/180° radians = π radians
C. An angle that measures 60° also measures π/3 radians. TRUE
60° × π/180° radians = π/3 radians
D. An angle that measures π/3 radians also measures 30°. FALSE
30° × π/180° radians = π/6 radians
Answer:
m = (3/4) n
Step-by-step explanation:
4m + 2n = 5n
The subtraction property of equality states that we can subtract 2n from both sides to isolate the m and its coefficient to get
4m = 3n
The division property of equality states that we can divide 4 from both sides to isolate only the m (we divide by 4 because anything divided by itself equals 1) to get
m = (3/4) n