Answer:
The answer is below
Step-by-step explanation:
The z score is a score used to determine the number of standard deviations by which the raw score is above or below the mean, it is given by the equation:

Given that μ = 650, σ = 50. To find the probability that 5 students who have a mean of 490, we use:

From the normal distribution table, P(x < 490) = P(Z < -7.16) = 0.0001 = 0.01%
Since only a small percentage of people score about 490, hence the local newspaper editor should write a scathing editorial about favoritism
He wrote the number 1892, because:
The number needs to be less than 2000, with four digits. Because the first is half the last, it means that the number must be 1??2.
These two numbers add up to 3, and all together, they need to add to 20. 20-3=17. The remaining numbers need to add to 17.
The only two single digit numbers that can add to 17, are 8 and 9. Therefore, the number must either be 1892 or 1982.
The second digit needs to be even, meaning that the number has to be 1892.
I hope this helps.
The answer is: [C]: -0.7, ⅕, 0.35, ⅔ .
________________________________________
Explanation:
_________________________________________
<span>
Note that in this correct Answer choice "C" given, we have the following arrangement of numbers:
_____________________________________________________
</span>→ -0.7, ⅕, 0.35, ⅔ ;
______________________________________
We are asked to find the "Answer choice" (or, perhaps, "Answer choices?") given that show a set of numbers arranged in order from "least to greatest"; that is, starting with a value that is the smallest number in the arrangement, and sequentially progressing, in order from least to greatest, with the largest (greatest) number in the arrangement appearing as the last number in the arrangement.
______________________
Note the EACH of the 4 (four) answer choices given consists of an arrangement with ONLY one negative number, "- 0.7". Only TWO of the answer choices—Choices "B" and "C"—have an arrangement beginning with the number, "-0.7 "; So we can "rule out" the "Answer choices: [A] and [D]".
________________________
Let us examine: Answer choice: [B]: <span>-0.7, 0.35, ⅕, ⅔ ;
</span>_________________________
Note: The fraction, "⅕" = "2/10"; or, write as: 0.2 .
________________________________________
The fraction, "⅔" = 0.6666667 (that is 0.6666... repeating; so we often see a "final decimal point" rounded to "7" at some point.
___________________________________________
Through experience, one will be able to automatically look at these 2 (two) fractions and immediately know their "decimal equivalents".
____________________________________________
Otherwise, one can determine the "decimal form" of these values on a calculator by division:
_________________________
→ ⅕ = 1/5 = 1 ÷ 5 = 0.2
_________________________
→ ⅔ = 2/3 = 2 ÷ 3 = 0.6666666666666667
___________________________________
For Answer choice: [B], we have:
______________________________
→ -0.7, 0.35, ⅕, ⅔ ;
_________________________
→ So, we can "rewrite" the arrangement of "Answer choice [B]" as:
___________________________________________
→ -0.7, 0.35, 0.2, 0.666666667 ;
________________________________
→ And we can see that "Answer choice: [B]" is INCORRECT; because
"0.2" (that is, "⅕"), is LESS THAN "0.35". So, "0.35" should not come BEFORE "⅕" in the arrangement that applies correctly to the problem.
_______________________________________
Let us examine: Answer choice: [C]: -0.7, ⅕, 0.35, 0.666666667 .
____________________________________________
→ Remember from our previous— and aforementioned—examination of "Answer Choice: [B]" ; that:
____________________________
→ ⅕ = 0.2 ; and:
→ ⅔ = 0.666666667
_______________________
So, given:
____________
→ Answer choice: [C]: -0.7, ⅕, 0.35, ⅔ ;
______________________
→ We can "rewrite" this given "arrangement", substituting our known "decimal values for the fractions:
______________________________
→ Answer choice: [C]: -0.7, 0.2, 0.35, 0.666666667 ;
_________________________________________
→ As mentioned above, this sequence starts with "-0.7", which is the ONLY negative number in the sequence; as such, the next positive number is correct. Nonetheless, "0.2" (or, "(⅕") is the next number in the sequence, and is greater than "-0.7". The next number is "0.35. "0.35" is greater than "⅕" (or, "0.2"). Then next number is "(⅔)" (or, "0.666666667").
"(⅔)"; (or, "0.666666667") is greater than 0.35.
____________________________
This set of numbers: "-0.7, ⅕, 0.35, ⅔" ; is arranged in order from least to greatest; which is "Answer choice: [C]: -0.7, ⅕, 0.35, ⅔" ; the correct answer.
________________________________________________________
Answer:
8.2 units
Step-by-step explanation:
Given that the only information for our triangle are 2 sides and 1 angle, we must use the Law of Cosines to find side BC
<u />
<u>Recall the Law of Cosines</u>
<u />
<u>Identify angles and sides</u>
<u />
<u>Solve for side "a"</u>
<u />
Therefore, the length of line segment BC is about 8.2 units
Hope this helps you out . Of solving for k then just set it equal to zero