Answer:
504 kilos de manzanas fueron llevados a la escuela.
Step-by-step explanation:
Sean , la cantidad de cajas de manzanas y peras, respectivamente. De acuerdo con el enunciado, tenemos el siguiente sistema de ecuaciones:
Total de cajas
(1)
Masa de cada caja de peras
(2)
(3)
Masa de caja de manzanas
(4)
De (2) en (3), tenemos que la masa de cada caja de peras es:
Por (4), encontramos que la masa de cada caja de manzanas es:
Finalmente, de (1) tenemos la cantidad de cajas de manzana:
La cantidad de kilos de manzanas llevada a la escuela se obtiene al multiplicar la cantidad de cajas de manzana por la masa de cada caja:
504 kilos de manzanas fueron llevados a la escuela.
I really hope that helps cause I went all out and best of wishes!!
Answer:
The answer in the procedure
Step-by-step explanation:
we have
2x-3y=-1 ----> equation A
3x+3y=26 --> equation B
Solve the system by elimination
Adds equation A and equation B
2x-3y=-1
3x+3y=26
----------------
2x+3x=-1+26
5x=25
x=25/5
x=5
Find the value of y
substitute the value of x in equation A or equation B and solve for y
2(5)-3y=-1
10-3y=-1
3y=10+1
y=11/3
Answer:
18219
Step-by-step explanation:
Answer:
The initial mass of the sample was 16 mg.
The mass after 5 weeks will be about 0.0372 mg.
Step-by-step explanation:
We can write an exponential function to model the situation.
Let the initial amount be A. The standard exponential function is given by:
Where r is the rate of growth/decay.
Since the half-life of Palladium-100 is four days, r = 1/2. We will also substitute t/4 for t to to represent one cycle every four days. Therefore:
After 12 days, a sample of Palladium-100 has been reduced to a mass of two milligrams.
Therefore, when x = 12, P(x) = 2. By substitution:
Solve for A. Simplify:
Simplify:
Thus, the initial mass of the sample was:
5 weeks is equivalent to 35 days. Therefore, we can find P(35):
About 0.0372 mg will be left of the original 16 mg sample after 5 weeks.