Using derivatives, it is found that the best estimate of f '(2) based on this table of values is of 10.
The rate of change <u>from x = 0 to x = 2</u> is given by:

From <u>x = 2 to x = 4</u>, it is given by:

The average of these rates is:

Hence, the best estimate of f '(2) based on this table of values is of 10.
To learn more about derivatives, brainly.com/question/18590720
In this case, all letters are unique.
Start by holding the first letter:
E - XAM
E - XMA
E - MAX
E - MXA
E - AXM
E - AMX
So there are 6 combinations here.
Repeat for all 4 letters.
6 x 4 = 24
This is same as 4x3x2x1.
For 3 unique characters, it is 3x2x1.
For 5 unique characters, it is 5x4x3x2x1
And so on...
Answer:
x₂ = 7.9156
Step-by-step explanation:
Given the function ln(x)=10-x with initial value x₀ = 9, we are to find the second approximation value x₂ using the Newton's method. According to Newtons method xₙ₊₁ = xₙ - f(xₙ)/f'(xₙ)
If f(x) = ln(x)+x-10
f'(x) = 1/x + 1
f(9) = ln9+9-10
f(9) = ln9- 1
f(9) = 2.1972 - 1
f(9) = 1.1972
f'(9) = 1/9 + 1
f'(9) = 10/9
f'(9) = 1.1111
x₁ = x₀ - f(x₀)/f'(x₀)
x₁ = 9 - 1.1972/1.1111
x₁ = 9 - 1.0775
x₁ = 7.9225
x₂ = x₁ - f(x₁)/f'(x₁)
x₂ = 7.9225 - f(7.9225)/f'(7.9225)
f(7.9225) = ln7.9225 + 7.9225 -10
f(7.9225) = 2.0697 + 7.9225 -10
f(7.9225) = 0.0078
f'(7.9225) = 1/7.9225 + 1
f'(7.9225) = 0.1262+1
f'(7.9225) = 1.1262
x₂ = 7.9225 - 0.0078/1.1262
x₂ = 7.9225 - 0.006926
x₂ = 7.9156
<em>Hence the approximate value of x₂ is 7.9156</em>
Answer:
w = 
Step-by-step explanation:
Reverse the equation placing w on the left side
8w - 3 = - 12u + 13 ( add 3 to both sides )
8w = - 12u + 16 ( divide both sides by 8 )
w = 