1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashcka [7]
3 years ago
5

Select all of the following true statements if R = real numbers, I = integers, and W = {0, 1, 2, ...}.

Mathematics
1 answer:
Vinvika [58]3 years ago
4 0

Answer and Step-by-step explanation:

We will begin to solve this problem by defining first what the sets' elements really are.

R consists of real numbers. This means that this set contains all the numbers, rational or not.

Z is composed of whole numbers. Integers include all negative and positive numbers as well as zero (it's basically a set of whole numbers and their negated values).

W, on the other hand, has 0,1,2, and its elements are onward. Those numbers are referred to as whole numbers.

W ⊂ Z is TRUE. Z contains all the numbers as stated earlier, and W is a subset of it.

R ⊂ W is FALSE. Not all numbers are complete numbers. Complete numbers must be rational and represented fractionless. These requirements are not met by those real numbers.

0 ∈ Z is TRUE.  Zero is just an integer so it is a component of Z.

∅ ⊂ R is TRUE. A set i.e null be R subset, and each and every set is a general set. Moreover, there were not single elements in a null set, so it spontaneous became a non empty set subset through description as there is no element of R.

{0,1,2,...} ⊆ W is TRUE. The set on the left is precisely what is specified in the statement for problem for W. (The bar below the subset symbol simply implies that the subset is not rigid, because the set on the left may be equal to the set on the right. Without it, the argument would be incorrect, because a strict subset needs that the two sets not be identical).

-2 ∈ W is FALSE. W's only made up of whole numbers and not their negated equivalents.

You might be interested in
There are 10 pens in a box. There are x red pens in the box. All the other pens are blue. Jack takes at random two pens from the
expeople1 [14]

The probability that one of each color is selected is \frac{10x - x^2}{45}

<h3>Probabilities</h3>

The probability of an event is the chances of the said event

The given parameters are:

  • Total  = 10
  • Red = x
  • Blue = 10 - x

<h3>Calculating the required probability</h3>

The probability that one of each color is selected is calculated as follows:

P = P(Blue) \times P(Red) + P(Red) \times P(Blue)

So, we have:

P = \frac{10 - x}{10} \times \frac{x}{9} + \frac{x}{10} \times \frac{10 - x}{9}

This gives

P = \frac{x(10 - x)}{90} +\frac{x(10 - x)}{90}

Take LCM

P = \frac{2x(10 - x)}{90}

Simplify the above expression

P = \frac{x(10 - x)}{45}

Expand

P = \frac{10x - x^2}{45}

Hence, the probability that one of each color is selected is P = \frac{10x - x^2}{45}

Read more about probabilities at:

brainly.com/question/7965468

4 0
2 years ago
Which expression represents "4 less than the product of 2 and a number,<br> e"?
vlabodo [156]

Answer:

2 x e-4

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Cesar has 32 boxes of pasta and 48 jars of sauce that he will be putting into bags for a food drive. He wants each bag to have t
zhannawk [14.2K]

Cesar has 32 boxes of pasta and 48 jars of sauce that he will be putting into bags for a food drive. He wants each bag to have the same amount of pasta and sauce and wants to use all of the items. Use the drop-down menus to complete the statements below about the number of bags Cesar can make.

What is the greatest number of bags Cesar can make and Each bag would have _____ pasta and _____ jars of sauce

Answer:

The greatest number of bags Cesar can make is 16 bags.

Each bag would have 2 pasta and 3 of jars of sauce

Step-by-step explanation:

We solve the above question using Greatest Common Factor method

The factors of 32 are: 1, 2, 4, 8, 16, 32

The factors of 48 are: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48

Then the greatest common factor is 16.

Hence, the greatest number of bags Cesar can make is 16 bags.

For Pasta, We have 32 pasta

Each bag would have: 32/16

= 2 pasta

For Jars of sauce, we have 48 jars of sauce.= 48/16

= 3 jars of sauce

4 0
2 years ago
Maje a ten or hundred to add mentally
NeTakaya
You can add numbers mentally if there are zero's behind them.
6 0
2 years ago
A rectangular swimming pool measures 40 ft by 60 ft and is surrounded by a path of uniform width around the four edges. The peri
Alex_Xolod [135]

Answer:

<em><u>6ft</u></em>

Step-by-step explanation:

<em><u>Lets</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em><em><u> </u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>surrounding </u></em><em><u>path</u></em><em><u> </u></em><em><u>wil</u></em><em><u>l</u></em><em><u> </u></em><em><u>add</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>pool</u></em><em><u> </u></em><em><u>dimension</u></em><em><u>,therefore</u></em><em><u> </u></em><em><u>over</u></em><em><u> </u></em><em><u>all</u></em><em><u> </u></em><em><u>dimesion</u></em><em><u>:</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>over</u></em><em><u>all</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u> </u></em><em><u>Simplify</u></em><em><u> </u></em><em><u>divide</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>2,</u></em><em><u> </u></em><em><u>result</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u> </u></em><em><u>Combine</u></em><em><u> </u></em><em><u>like</u></em><em><u> </u></em><em><u>term</u></em><em><u>s</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em>

<em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u>ft</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>th</u></em><em><u>e</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em>

<em><u>check</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>by</u></em><em><u> </u></em><em><u>finding</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>with</u></em><em><u> </u></em><em><u>these</u></em><em><u> </u></em><em><u>values</u></em><em><u>;</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>12</u></em><em><u> </u></em><em><u>ft</u></em><em><u> </u></em>

<em><u>2</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em>

<em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>5</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>7</u></em><em><u>2</u></em><em><u>)</u></em>

<em><u>1</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u>;</u></em><em><u> </u></em><em><u>confirms</u></em><em><u> </u></em><em><u>our</u></em><em><u> </u></em><em><u>solution</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>ft</u></em>

5 0
3 years ago
Other questions:
  • The question​ of the week! (Please show your work!)
    11·1 answer
  • jenny purchased a prepaid phone card for $30 . long distance calls cost 24 cents a minute using this card. jenny used her card o
    14·2 answers
  • When factoring a trinomial of the form ax2 + bx + c where a and b are both positive and c is negative, you need to find two numb
    13·2 answers
  • How can I find the difference of the median and mode
    11·1 answer
  • Consider the following equations.
    12·1 answer
  • Frank wrote these ratios to describe the number of votes each candidate received compared to the total. Which one is wrong, and
    10·1 answer
  • The spinner to the right is spun 20 times. It lands on red 6 times, yellow 2 times, green 8 times, and blue 4 times.
    9·1 answer
  • i tried to answer this like 500 times and i’m confused- can someone plz solve it lol... only if you are correct tho because i ca
    10·1 answer
  • What is the result of a dilation of scale factor 3 centered at the origin of the line 2y + 3x=10
    14·1 answer
  • The top of an off shore oil rig has an elevation of 199.2 m and its base has an elevation of -9.6 m and observation deck is loca
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!