Answer:
FOR REGULAR PYRAMID with those dimension.
L.A = 96
FOR HEXAGONAL PYRAMID with those dimension
L.A = 171.71
Step-by-step explanation:
Please the question asked for L.A of a REGULAR PYRAMID, but the figure is a HEXAGON PYRAMID.
Hence I solved for both:
FOR REGULAR PYRAMID
Lateral Area (L.A) = 1/2* p * l
Where p = Perimeter of base
P = 4s
P = 4 * 6
P = 24cm
l = slanted height
l = 8cm
L.A = 1/2 * 24 * 8
L.A = 1/2 ( 192)
L.A = 96cm ^ 2
FOR AN HEXAGONAL PYRAMID
Lateral Area = 3a √ h^2 + (3a^2) / 4
Where:
a = Base Edge = 6
h = Height = 8
L.A = 3*6 √ 8^2 + ( 3*6^2) / 4
L.A = 18 √ 64 + ( 3 * 36) / 4
L.A = 18 √ 64 + 108/4
L.A = 18 √ 64+27
L.A = 18 √ 91
L.A = 18 * 9.539
L.A = 171.71
The answer is A
You can solve this by equation the two equations, by substitution method or elimination. Let's choose the substitution since Equation 2 has already X isolated
-take the X in equation 2 and substitute in the first equation
So, You should have 5 (5-3/2 y) -4y =7
Get y ( I'll assume you know how to simplify and find y by yourself )
y=36/23
-Now take y and substitute it in the first equation or the second equation (it doesn't really matter)
Substituting y in Equation 2:
x=5- 3/2 (36/23)
=> x= 61/23
So answer is A where (x,y) is (61/23, 36/23)
Answer:
I believe it's 12
Step-by-step explanation:
I hope this helps
4(3x+4) This should hellp
Answer:
1-(r÷7) or r÷7-1
Step-by-step explanation: Quotient is the result of a division problem.