Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
Answer:
(s-6)/r
option D
Step-by-step explanation:
The slope-intercept form a line is y=mx+b where m is the slope and b is the y-intercept.
Compare y=mx+b and y=cx+6, we see that m=c and c is the slope.
Now we are also given that (r,s) is on our line which means s=c(r)+6.
We need to solve this for c to put c in terms of r and s as desired.
s=cr+6
Subtract 6 on both sides:
s-6=cr
Divide both sides by r:
(s-6)/r=c
The slope in terms of r and s is:
(s-6)/r.
A and C are correct, you have to multiply 32 by 4 and by 12, then add the answers together to find how many juice boxes total.
C. y = 0.5x.
The coefficient of x is the slope of the line. From the picture, you can see that the slope of the blue line is half the slope of the black line.
The value of a is 9, the correct option is B.
Given
Hank’s teacher asked him to verify that the product (y−3)(y2+3y+9), is a difference of cubes.
<h3>Quadratic equation;</h3>
The equation which has the highest degree is 2 is called quadratic equation;
Where a, b, and c are the constants.
The given polynomial is;
On multiplying the terms;
On comparing;
Hence, the value of a is 9.
To know more about polynomial click the link is given below.
brainly.com/question/6169816