M is a factor of n so the answer is d
Answer:
And rounded up we have that n=1068
Step-by-step explanation:
For this case we have the following info given:
the margin of error desired
the level of confidence given
The margin of error for the proportion interval is given by this formula:
(a)
the critical value for 95% of confidence is 
We can use as estimator for the population of interest
. And on this case we have that
and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
And replacing into equation (b) the values from part a we got:
And rounded up we have that n=1068
Answer:
True
Step-by-step explanation:
A six sigma level has a lower and upper specification limits between
and
. It means that the probability of finding no defects in a process is, considering 12 significant figures, for values symmetrically covered for standard deviations from the mean of a normal distribution:

For those with defects <em>operating at a 6 sigma level, </em>the probability is:

Similarly, for finding <em>no defects</em> in a 5 sigma level, we have:
.
The probability of defects is:

Well, the defects present in a six sigma level and a five sigma level are, respectively:
Then, comparing both fractions, we can confirm that a <em>6 sigma level is markedly different when it comes to the number of defects present:</em>
[1]
[2]
Comparing [1] and [2], a six sigma process has <em>2 defects per billion</em> opportunities, whereas a five sigma process has <em>600 defects per billion</em> opportunities.
Answer:
How many drinks should be sold to get a maximal profit? 468
Sales of the first one = 345 cups
Sales of the second one = 123 cups
Step-by-step explanation:
maximize 1.2F + 0.7S
where:
F = first type of drink
S = second type of drink
constraints:
sugar ⇒ 3F + 10S ≤ 3000
juice ⇒ 9F + 4S ≤ 3600
coffee ⇒ 4F + 5S ≤ 2000
using solver the maximum profit is $500.10
and the optimal solution is 345F + 123S