1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
5

What is the nearest tenth of .8215?

Mathematics
1 answer:
riadik2000 [5.3K]3 years ago
8 0

Answer:

The answer to this would be .8

Step-by-step explanation:

A tenth is only one figure, and due to the rule of "5 and above give it a shove; 4 and below let it go", this number would round to 0.8.

You might be interested in
Help me please in number 4
Dvinal [7]
Larger negative numbers are less than, if you picture a number line.

<.......-83 ............-38........0........+38..........>

-83 < -38

The canyon is deeper or has a lower elevation than the scuba diving location.
5 0
3 years ago
What is the value of x in the equation 0.02x+0.7=0.8−0.03x ?
Arisa [49]
The value of x is 2
5 0
3 years ago
10m^2 of tiles cover a pool, the pool is shaped as a square, so all four edges are the same, and the depth is constant but not e
nignag [31]
Assume:

Size of sides = x m
Depth of the pool = y m

Therefore, surface area = x^2+4xy =10 m^2

Then, y = (10-x^2)/(4x)

Now,
Volume (V) = x^2*y = x^2*y =x^2(10-x^2)/4x = (10x-x^3)/4 = 1/4(10x-x^3)
For maximum volume, first derivative of volume function is equal to zero.
That is,
dV/dx =0 = 1/4(10-3x^2)
Then,
1/4(10-3x^2) = 0
10-3x^2 = 0
3x^2=10
x= sqrt (10/3) = 1.826 m
And
y= (10-1.826^2)/(4*1.826) = 0.913 m

Therefore,
V= 1.826^2*0.913 = 3.044 m^3
3 0
3 years ago
House of Mohammed sells packaged lunches, where their finance department has established a
blagie [28]

The revenue function is a quadratic equation and the graph of the function

has the shape of a parabola that is concave downwards.

The correct responses are;

  • (a) <u>R = -x² + 82·x</u>
  • (b) <u>$1,645</u>
  • (c) The graph of <em>R</em> has a maximum because the <u>leading coefficient </u>of the quadratic function for <em>R</em> is negative.
  • (d)  <u>R = -1·(x - 41)² + 1,681</u>
  • (e) <u>41</u>
  • (f) <u>$1,681</u>

Reasons:

The given function that gives the weekly revenue is; R = x·(82 - x)

Where;

R = The revenue in dollars

x = The number of lunches

(a) The revenue can be written in the form R = a·x² + b·x + c by expansion of the given function as follows;

R = x·(82 - x) = 82·x - x²

Which gives;

  • <u>R = -x² + 82·x </u>

<em>Where, the constant term, c = 0</em>

(b) When 35 launches are sold, we have;

x = 35

Which by plugging in the value of x = 35, gives;

R = 35 × (82 - 35) = 1,645

  • The revenue when 35 lunches are sold, <em>R</em> = <u>$1,645</u>

(c) The given function for <em>R</em> is R = x·(82 - x) = -x² + 82·x

Given that the leading coefficient is negative, the shape of graph of the

function <em>R</em> is concave downward, and therefore, the graph has only a

maximum point.

(d) The form a·(x - h)² + k is the vertex form of quadratic equation, where;

(h, k) = The vertex of the equation

a = The leading coefficient

The function, R = x·(82 - x), can be expressed in the form a·(x - h)² + k, as follows;

R = x·(82 - x) = -x² + 82·x

At the vertex, of the equation; f(x) = a·x² + b·x + c,  we have;

\displaystyle x = \mathbf{-\frac{b}{2 \cdot a}}

Therefore, for the revenue function, the x-value of the vertex, is; \displaystyle x = -\frac{82}{2 \times (-1)} = \mathbf{41}

The revenue at the vertex is; R_{max} = 41×(82 - 41) = 1,681

Which gives;

(h, k) = (41, 1,681)

a = -1 (The coefficient of x² in -x² + 82·x)

  • The revenue equation in the form, a·(x - h)² + k is; <u>R = -1·(x - 41)² + 1,681</u>

(e) The number of lunches that must be sold to achieve the maximum revenue is given by the x-value at the vertex, which is; x = 41

Therefore;

  • The number of lunches that must be sold for the maximum revenue to be achieved is<u> 41 lunches</u>

(f) The maximum revenue is given by the revenue at the vertex point where x = 41, which is; R = $1,681

  • <u>The maximum revenue of the company is $1,681</u>

Learn more about the quadratic function here:

brainly.com/question/2814100

6 0
3 years ago
Factor this expression: 12 + 20
liberstina [14]

Answer:

<h2>12 + 20 = 4 × (3 + 5)</h2>

Step-by-step explanation:

12 = 4 × 3

20 = 4 × 5

12 + 20 = 4 × 3 + 4 × 5 = 4 × (3 + 5)

5 0
4 years ago
Other questions:
  • A production manager tests 10 batteries and finds that their mean lifetime is 468
    14·1 answer
  • Factor the following expression.
    6·1 answer
  • 5x^{2} + 3x = x^{2} + 7x
    12·1 answer
  • Carol needs for lb of nuts for her granola she has 26 oz of walnuts and 28 oz of cashews how many ounces of peanuts should she b
    10·1 answer
  • Let f(x)=x^2-5x-36.
    12·1 answer
  • Somone explain this question to me ? And help me do it
    15·1 answer
  • -6×f (-3) -5×g(-7) =
    5·1 answer
  • (0.a * 10) - (0.a ÷ 10) = 6.93
    8·2 answers
  • What is the length of this pool?<br> 6 ft<br> X<br> 97<br> 5 ft
    5·1 answer
  • A car travels 568km in 8 1/2 hours. What is the average speed in meters/second?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!