Volume of the box= <span>56 cubic inches
let x is the length, then
width =</span><span>2 inches shorter than its length = x - 2
</span>height = <span>3 inches taller than its length = x+3
Volume = length x width x height
56 = x x (x-2) x (x+3)
56 = (x</span>² -2x)(x+3)
56 = x³ +3x² -2x² - 6x
56 = x³ + x² -6x
x³+x²-6x-56 = 0
using the rational root theorem and factoring the polynomial;
(x-4)(x² +5x +14) = 0
from here;
x-4 = 0
x = 4
So, length = 4 inches
width = x - 2 = 4 -2 = 2 inches
length = x + 3 = 4 + 3 = 7 inches
volume = l x w x h = 4 x 2 x 7 = 56
You have to go past the decimal point in since the first number in the tenths place is a zero you can't really round here so you go to the hundreds place and not so three you round down because 3 is closer to 0 then it is 10 so it would be 1. 4
Answer:
A. 1/3
Step-by-step explanation:
Dado que:
una manzana se corta en 12 partes y se comen ocho partes.
La fracción de manzanas consumidas = 8/12
= 2/3
La fracción de manzanas que quedan = valor original de la manzana que se corta - la fracción de la manzana que se come
La fracción de manzanas que quedan 
La fracción de manzanas que quedan 
La fracción de manzanas que quedan 
A la fracción más baja; obtenemos = 1/3
Answer:
we know that
The volume of the prism is equal to
V=L*W*H
where
L is the length side of the base of the prism
W is the width side of the base of the prism
H is the height of the prism
In this problem we have
L=\frac{d-2}{3d-9}=\frac{d-2}{3(d-3)}
W=\frac{4}{d-4}
H=\frac{2d-6}{2d-4}=\frac{2(d-3)}{2(d-2)}=\frac{(d-3)}{(d-2)}
Substitute the values in the formula
V=\frac{d-2}{3(d-3)}*\frac{4}{d-4}*\frac{(d-3)}{(d-2)}=\frac{4}{3(d-4)}=\frac{4}{3d-12}
therefore
the answer is the option
4/3d-12
Step-by-step explanation:
Answer:
Given:-
The length of copper wire (L) = 270 cm
Area of cross-sectional (A) = 0.030 
and specific resistance (ρ) =
ohm-cm.
Use the formula R=(Specific resistance*L)/A, to calculate the Resistance(R)
then,
ohm
Simplify:
R = 0.0162 ohm =
ohm
Therefore, the resistance of copper wire is,
Ω