The equation for which square method is possible is x²-8=1
Step-by-step explanation:
For checking which of the equation satisfies the complete square condition, we proceed by checking each of the available options
1). x²+20x=52
Rewriting it as x²+20x-52
This binomial expression is not a perfect square since the product of the coefficient of x²(i.e. 1) and independent constant (i.e. 52) is not a perfect square.
2). 5x² + 3x = 9
This equation can be rearranged as 5x²+3x-9=0
This binomial expression is not a perfect square since the product of the coefficient of x²(i.e. 5) and independent constant(i.e. 9) is not a perfect square.
3.) x² −8=1
This equation can be rearranged as x²=9
Hence x= ±3
This binomial expression is a perfect square and can be done by the square method.
4). 3x² −x+17=0
This binomial expression is not a perfect square since the product of the coefficient of x²(i.e. 3) and independent constant(i.e. 17) is not a perfect square.
65 crayons and 48 markers after giving the 10 crayons to a friend.
Answer:
16) 
17) y = -x - 4
18) y = -2x - 1
19) y = -2x
20)
Step-by-step explanation:
With the two points you find the slope using 
Then using that slope, plug the slope in with one of the points values of x and y into the point slope formula, and smiplify that into the y-intercept formula.
Answer:
The significance level is
and since we are conducting a right tailed test we need to find a critical value who accumulate 0.01 of the area in the right of the normal standard distribution and we got:

So we reject the null hypothesis is 
Step-by-step explanation:
For this case we define the random variable X as the number of entry-level swimmers and we are interested about the true population mean for this variable . On specific we want to test this:
Null hypothesis: 
Alternative hypothesis: 
And the statistic is given by:

The significance level is
and since we are conducting a right tailed test we need to find a critical value who accumulate 0.01 of the area in the right of the normal standard distribution and we got:

So we reject the null hypothesis is 