(a) The "average value" of a function over an interval [a,b] is defined to be
(1/(b-a)) times the integral of f from the limits x= a to x = b.
Now S = 200(5 - 9/(2+t))
The average value of S during the first year (from t = 0 months to t = 12 months) is then:
(1/12) times the integral of 200(5 - 9/(2+t)) from t = 0 to t = 12
or 200/12 times the integral of (5 - 9/(2+t)) from t= 0 to t = 12
This equals 200/12 * (5t -9ln(2+t))
Evaluating this with the limits t= 0 to t = 12 gives:
708.113 units., which is the average value of S(t) during the first year.
(b). We need to find S'(t), and then equate this with the average value.
Now S'(t) = 1800/(t+2)^2
So you're left with solving 1800/(t+2)^2 = 708.113
<span>I'll leave that to you</span>
Answer:
What is the question that you are asking?
Step-by-step explanation:
Answer:
32
Step-by-step explanation:
Step 1: Define
f(x) = 3x² - 5x - 4
g(x) = -4x - 12
Step 2: Find f(g(x))
f(g(x)) = 3(-4x - 12)² - 5(-4x - 12) - 4
f(g(x)) = 3(16x² + 96x + 144) + 20x + 60 + 4
f(g(x)) = 48x² + 288x + 432 + 20x + 64
f(g(x)) = 48x² + 308x + 496
Step 3: Find f(g(-4))
f(g(-4)) = 48(-4)² + 308(-4) + 496
f(g(-4)) = 48(16) - 1232 + 496
f(g(-4)) = 768 - 736
f(g(-4)) = 32
54 as opposite angles are the same and they need to have the same angle to be parallel
Answer:
(C) 
Step-by-step explanation: