Answer:
Remove 1 x-tile from both sides.
Remove 3 unit tiles from both sides.
Step-by-step explanation:
2x + 3 = x + 5
First we want all the variables on one side
Subtract x from each side so Remove 1 x-tile from both sides.
x+3 = 5
Now we need to get all the constants on the same side
Subtract 3 from each side so Remove 3 unit tiles from both sides.
x = 5-3
x=2
Note: you did not provide the answer options, so I am, in general, solving this query to solve your concept, which anyways would clear your concept.
Answer:
Please check the explanation.
Step-by-step explanation:
Given the inequality
All we need is to find any random value of 'x' and then solve the inequality.
For example, putting x=3
So, at x = 3, the calculation shows that the value of y must be less
than 1 i.e. y<1 in order to be the solution.
Let us take the random y value that is less than 1.
As y=0.9 < 1
so putting y=0.9 in the inequality
Means at x=3, and y=0.9, the inequality is satisfied.
Thus, (3, 0.9) is one of the many ordered pairs solutions to the inequality 3x-4y>5.
Answer:
Sabemos que:
L es el largo de la avenida.
En la primer etapa se asfalto la mitad, L/2, entonces lo que queda por asfaltar es:
L - L/2 = L/2.
En la segunda etapa se asfalto la quinta parte, L/5, entonces lo que queda por asfaltar es:
L/2 - L/5 = 5*L/10 - 2*L/10 = (3/10)*L
En la tercer etapa se asfalto la cuarta parte del total, L/4, entonces lo que queda por asfaltar es:
(3/10)*L - L/4 = 12*L/40 - 10L/40 = (2/40)*L
Y sabemos que este ultimo pedazo que queda por asfaltar es de 200m:
(2/40)*L = 200m
L = 200m*(40/2) = 4,000m
A = 1/3 * s^2 * h where s is a side of the base and h is the height.