1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
11

Let f(x)=ex.

Mathematics
1 answer:
Klio2033 [76]3 years ago
4 0

Answer:

Not sure if this is exactly the same,but hopefully it answers your questions.

Download pdf
You might be interested in
HELPPPPPPPPPP PLEASE
777dan777 [17]

Answer:

P = (nRT)/V

Step-by-step explanation:

Step 1: Write formula

PV = nRT

Step 2: Divide both sides by V

P = (nRT)/V

5 0
4 years ago
What shape would the cross section perpendicular to the base be? Why? A square B triangle C rectangle D trapezoid
erik [133]

Answer:

Step-by-step explanation:

Retangle

Thanks hope this helped

4 0
3 years ago
The note A has a frequency of 880 hertz. The note D has a frequency of 1,175 hertz. Find the ratio of D to A to two decimal plac
Trava [24]

Step-by-step explanation:

We have,

The frequency of note A is 880 Hz and the frequency of note D is 1175 Hz. It is required to find the ratio of D to A.

It means \dfrac{f_D}{f_A}.

Using the values of frequency of D and A. So,

\dfrac{f_D}{f_A}=\dfrac{1175}{880}

In decimal form,

\dfrac{f_D}{f_A}=1.33

In integer form,

\dfrac{f_D}{f_A}=\dfrac{1175 }{880}\\\\\dfrac{f_D}{f_A}=\dfrac{235}{176}

5 0
4 years ago
Read 2 more answers
Jorgen made deposits of $250 at the end of each year for 12 years. The rate received was 6% annually. What's the value of the in
svet-max [94.6K]
FV = P(\frac{ (1+r)^{n}-1 }{r})

Where, FV = Value after 12 years, P= Yearly deposits = $250, r= Rate = 6% = 0.06, n=Number of years = 12 years.

Then,
FV= 250 (\frac{( 1+0.06)^{12} -1 }{0.06}) = $4,217.50
8 0
4 years ago
Read 2 more answers
Integrating sums of functions
Andrei [34K]

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • Nicole, Tasha, Maria, and Joan each walk to school from home. Nicole walks 1 11/12 miles. Tasha walks 2 1/12. Maria walks 1 7/12
    8·2 answers
  • What is the value of the function v=5/2t-3/4 when t=3?
    13·1 answer
  • Help me plz ☝️☝️☝️☝️☝️☝️
    12·1 answer
  • Lee washes the outsides of houses. It takes him 40 minutes to power wash a one-story home, and he uses 180 gallons of water. Pow
    10·1 answer
  • Make x the subject of h = 4(x + 3y) + 2
    6·1 answer
  • Are the equations – 2x = 10 and -5x = 25 equivalent? Explain
    12·2 answers
  • What is the distance between the points (2,10) and (-6, 4) on the coordinate
    6·1 answer
  • EMERGENCY!
    9·2 answers
  • 4)) Solve for r.<br> 10' = 1,000<br> r=
    10·1 answer
  • Solve the equation .<br>a. 5×=35<br>b. 4× = 18<br>c. 6c–2c = 12.​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!