Answer:
none
Step-by-step explanation:
there would be no solutions because 39 does not equal 15
The system of equations when been placed in a matrix yields
![\left[\begin{array}{ccc}650&-1\\120&1\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}-175\\25080\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D650%26-1%5C%5C120%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-175%5C%5C25080%5Cend%7Barray%7D%5Cright%5D)
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more variables and numbers.
Given the equation:
y = 650x + 175 and;
y = 25080 - 120x
Rearranging the equations gives:
650x - y = -175 and;
120x + y = 25080
Placing the equations in a matrix gives:
![\left[\begin{array}{ccc}650&-1\\120&1\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}-175\\25080\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D650%26-1%5C%5C120%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-175%5C%5C25080%5Cend%7Barray%7D%5Cright%5D)
The system of equations when been placed in a matrix yields
![\left[\begin{array}{ccc}650&-1\\120&1\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}-175\\25080\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D650%26-1%5C%5C120%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-175%5C%5C25080%5Cend%7Barray%7D%5Cright%5D)
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:
- question 2 answer is C. (-1,7) and (6,28)
- question 3 answer is A. it is possible for a system of equations composed of linear function and a quadratic function to have 3 solutions.
- question 4 answer is (1,6)
P.s. if any question is wrong then I'm sorry. :(
Step-by-step explanation:
question 4
y=2x^2-5x+9
y= 2x^2+5x-1
y= 2x^2-5x+9=2x^2+5x-1
x=1
y= 2×1^2+5×1-1
y=6