(5(2x))^3
Use the property of exponents:
(5^3)*(2x)^3
Simplify the exponents:
125*8*x^3
Simplify the numbers and multiply the integers:
1000*x^3
Hope this helps :)
Answer: 0.8238
Step-by-step explanation:
Given : Scores on a certain intelligence test for children between ages 13 and 15 years are approximately normally distributed with
and
.
Let x denotes the scores on a certain intelligence test for children between ages 13 and 15 years.
Then, the proportion of children aged 13 to 15 years old have scores on this test above 92 will be :-
![P(x>92)=1-P(x\leq92)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{92-106}{15})\\\\=1-P(z\leq })\\\\=1-P(z\leq-0.93)=1-(1-P(z\leq0.93))\ \ [\because\ P(Z\leq -z)=1-P(Z\leq z)]\\\\=P(z\leq0.93)=0.8238\ \ [\text{By using z-value table.}]](https://tex.z-dn.net/?f=P%28x%3E92%29%3D1-P%28x%5Cleq92%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B92-106%7D%7B15%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq%20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq-0.93%29%3D1-%281-P%28z%5Cleq0.93%29%29%5C%20%5C%20%5B%5Cbecause%5C%20P%28Z%5Cleq%20-z%29%3D1-P%28Z%5Cleq%20z%29%5D%5C%5C%5C%5C%3DP%28z%5Cleq0.93%29%3D0.8238%5C%20%5C%20%5B%5Ctext%7BBy%20using%20z-value%20table.%7D%5D)
Hence, the proportion of children aged 13 to 15 years old have scores on this test above 92 = 0.8238
Answer:
a= 31
b=92
c=44
Step-by-step explanation:
Answer:
no
Step-by-step explanation:
if he randomly pulls it out it's still the same number of red cards and also the total number of cards as always
can't change