Answer:
We can do it with envelopes with amounts $1,$2,$4,$8,$16,$32,$64,$128,$256 and $489
Step-by-step explanation:
- Observe that, in binary system, 1023=1111111111. That is, with 10 digits we can express up to number 1023.
This give us the idea to put in each envelope an amount of money equal to the positional value of each digit in the representation of 1023. That is, we will put the bills in envelopes with amounts of money equal to $1,$2,$4,$8,$16,$32,$64,$128,$256 and $512.
However, a little modification must be done, since we do not have $1023, only $1,000. To solve this, the last envelope should have $489 instead of 512.
Observe that:
- 1+2+4+8+16+32+64+128+256+489=1000
- Since each one of the first 9 envelopes represents a position in a binary system, we can represent every natural number from zero up to 511.
- If we want to give an amount "x" which is greater than $511, we can use our $489 envelope. Then we would just need to combine the other 9 to obtain x-489 dollars. Since
, by 2) we know that this would be possible.
Answer:
a
Step-by-step explanation:
just did this last period
Answer:
.40km or 1/4 a mile
Step-by-step explanation:
Your answer is "happy" based on <span>mood-dependent memory research they conducted.</span>
Answer:
2 hours: 3968 <u>[I don't understand the $ sign in the answer box]</u>
At midnight: 12137
Step-by-step explanation:
The bacteria are increasing by 15% every hour. So for every hour we will have what we started with, plus 15% more.
The "15% more" can be represented mathematically with (1 + 0.15) or 1.15. Let's call this the "growth factor" and assign it the variable b. b is (1 + percent increase).
Since this per hour, in 1 hour we'll have (3000)*(1.15) = 3450
At the end of the second hour we're increased by 15% again:
(3450)*(1.15) = 3968.
Each additional hour add another (1.15) factor, If we assign a to be the starting population, this can be represented by:
P = a(1.15)^t for this sample that increase 15% per hour. t is time, in hours.
If a represents the growth factor, and P is the total population, the general expression is
P = ab^t
Using this for a = 3000 and b = 1.15, we can find the total population at midnight after starting at 2PM. That is a 10 hour period, so t = 10
P = (3000)*(1.15)^10
P = 12137