Answer:
Let a be the width and b the length
a+3=b
a*b=54
a(a+3)=54
a^2+3a-54=0
a=6
Answer:



Step-by-step explanation:
Given


maximum
minimum
Required
Solve graphically
First, we need to determine the inequalities of the system.
For number of coins, we have:
because the number of coins is not less than 20
For the worth of coins, we have:
because the worth of coins is not more than 0.80
So, we have the following equations:


Make y the subject in both cases:


Divide through by 0.01



The resulting inequalities are:


The two inequalities are plotted on the graph as shown in the attachment.
--- Blue
--- Green
Point A on the attachment are possible solutions
At A:

Answer:
x=2
Step-by-step explanation:
-2x+4=6x-12 Add 2x to both sides.
<u>+2x +2x</u>
4=8x-12 Add 12 to both sides.
<u>+12 +12</u>
16=8x Divide by 8 on both sides.
<u>/8 /8</u>
2=x
Hope this helps you out and have a great day (~^▽^)~
What a delightful little problem ! (Partly because I could see
right away how to do it, and had the answer in a few minutes,
after a lot of impressive-looking algebra on my scratch-paper.)
Three consecutive integers are . . . x, x+1, and x+2
The smallest two are . . . x and x+1
Their product is . . . . . x(x+1)
5 times the largest one is . . . 5(x+2)
5 less than that is . . . . . . 5(x+2)-5
Now, the conditions of the problem say that <u>x (x + 1) = 5 (x+2) - 5</u>
THAT's the equation we have to solve, to find 'x' .
Eliminate parentheses: x² + x = 5x + 10 - 5
Combine like terms: x² + x = 5x + 5
Subtract 5x from each side: x² - 4x = 5
Subtract 5 from each side: <u>x² - 4x - 5 = 0</u>
You could solve that by factoring it, or use the quadratic equation.
Factored, it says that (x + 1) (x - 5) = 0
From which <em>x = -1</em>
and <em>x = +5</em>
We only want the positive results, so our three consecutive integers are
5, 6, and 7 .
To answer the question, the smallest one is <em><u>5 </u></em>.
<u>Check</u>:
5 x 6 ? = ? (7 x 5) - 5
30 ? = ? (35) - 5
30 = 30
yay !