Answer 1: Difference b/w wet and dry earwax genes is due to switch of a single DNA unit i.e. single nucleotide polymorphism.
Answer 2: Earwax is important in many ways mainly it is a biological flypaper as it prevents dust and insects from entering the ear.
Answer 3: Genetics have proved that for those who sweat a lot and have armpit odor have wet earwax.
Answer 4: The wet type earwax is dominant one with honey brown or dark brown color while dry one is recessive.
Answer 5: As wet earwax is dominant trait, according to the given scenario the genotype of parent with wet earwax will be "WW" which when crossed with dry earwax parent will have all the offsprings with wet earwax.
1) Weather services gives up to 8 hours of watch time because its just a prediction and might not be accurate
2) Necessary precautions is when there is a dangerous weather alert coming towards you and you need to go for safety
3) When theres a warning, it means to look out for something and be safe at the same time
Answer:
The provided events can be classified as:
Initiation
- In prokaryotes, the Shine-Dalgarno sequence pairs with rRNA.
- In E. coli, mRNA binds to the 30S ribosomal subunit.
Elongation
- In E. coli, EF-Tu delivers an aminoacyl-tRNA to the ribosome
- Initiator tRNA enters the P site.
- In E. coli, EF-Tu hydrolyzes.
- Translocation occurs
Termination
- The ribosome has mRNA, an empty A site, and deacylated tRNA in the P site
Translation is the process by which polypeptide chain is synthesized based on the codon sequence of the mRNA (messenger ribonucleic acid).
It is divided into three stages:
Initiation: The small and large sub-units of the ribosome get assembled around the initiation codon. It forms three sites (A, P, and E site) for interaction tRNA and mRNA.
Elongation: Specific charged-tRNA enters from A site and transfers its amino acid to the growing polypeptide chain in P site. Uncharged tRNA exit from the E site. Ribosome moves or translocates to the next codon.
Termination: As soon as ribosome reaches the termination codon, it releases the newly synthesized polypeptide chain.
When a single copy of a disease allele doesn't result in a disease but instead is good for the person or organism that carries it, we say that allele has a heterozygote advantage. In other words this occurs when heterozyhotes have increased fitness over both homozygotes. A good example is sickcle cell trait, which protects against malaria in heterozygotes, but causes a deadly disease in homozygotes.