Answer:
Yes
Step-by-step explanation:
A square is a quadlirateral.
A rectangle is a quadrilateral.
<span>Prime is the best option describes the number 5.The number 5 is a prime because prime can be divided evenly by 1, or itself. And it must be a whole number greater than 1.But 6 can be divided evenly by 1, 2, 3 and 6 so it is NOT a prime number (it is a composite number).</span>
check the picture below on the top side.
we know that x = 4 = b, therefore, using the 30-60-90 rule, h = 4√3, and DC = 4+8+4 = 16.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=8\\ b=\stackrel{DC}{16}\\ h=4\sqrt{3} \end{cases}\implies A=\cfrac{4\sqrt{3}(8+16)}{2} \\\\\\ A=2\sqrt{3}(24)\implies \boxed{A=48\sqrt{3}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%0A%5Cbegin%7Bcases%7D%0Aa%2Cb%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Aa%3D8%5C%5C%0Ab%3D%5Cstackrel%7BDC%7D%7B16%7D%5C%5C%0Ah%3D4%5Csqrt%7B3%7D%0A%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B4%5Csqrt%7B3%7D%288%2B16%29%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D2%5Csqrt%7B3%7D%2824%29%5Cimplies%20%5Cboxed%7BA%3D48%5Csqrt%7B3%7D%7D)
now, check the picture below on the bottom side.
since we know x = 9, then b = 9, therefore DC = 9+6+9 = 24, and h = b = 9.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=6\\ b=\stackrel{DC}{24}\\ h=9 \end{cases}\implies A=\cfrac{9(6+24)}{2} \\\\\\ A=\cfrac{9(30)}{2}\implies \boxed{A=135}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%0A%5Cbegin%7Bcases%7D%0Aa%2Cb%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Aa%3D6%5C%5C%0Ab%3D%5Cstackrel%7BDC%7D%7B24%7D%5C%5C%0Ah%3D9%0A%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B9%286%2B24%29%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D%5Ccfrac%7B9%2830%29%7D%7B2%7D%5Cimplies%20%5Cboxed%7BA%3D135%7D)