Length (2, 6) to (-4, 6) is sqrt((x2 - x1))^2 + (y2 - y1)^2) = sqrt((-4 -2)^2 + (6 - 6)^2) = sqrt((-6)^2 + 0) = 6
Length (2, 6) to (-4, 4) is sqrt((-4 - 2)^2 + (4 - 6)^2) = sqrt((-6)^2 + (-2)^2) = sqrt(36 + 4) = sqrt(40) = 2sqrt(10) units
Length (-4, 6) to (-4, 4) is sqrt((-4 - (-4))^2 + (4 - 6)^2) = sqrt(0^2 + (-2)^2) = 2
Therefore, the length of the longest side is 2sqrt(10) units
Answer:
-3x^6 -x^4 +2x^3 -8x +8
Step-by-step explanation:
Use the distributive property 4 times.
(-3x^3 + 2x - 4)×(x^3 + x - 2)
= -3x^3(x^3 +x -2) +2x(x^3 +x -2) -4(x^3 +x -2) . . . . once
= -3x^6 -3x^4 +6x^3 +2x^4 +2x^2 -4x -4x^3 -4x +8 . . . . 3 more times
= -3x^6 +x^4(-3+2) +x^3(6 -4) +2x^2 +x(-4 -4) +8 . . . . group like terms
= -3x^6 -x^4 +2x^3 -8x +8
Answer:
34
Step-by-step explanation:
13-(-21) = 13 + 21 = 34
Step-by-step explanation:
Average mean = (q1 + q2 + q3)/3.