Answer:
V = 36Π cubic Centimetres
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Volume of the solid
The Volume of the solid formed by revolving the region bounded by the curve y = f(x) and rotated around the x-axis defined by
![V = \pi \int\limits^a_b {[f(x)]^{2} } \, d x](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5Cint%5Climits%5Ea_b%20%7B%5Bf%28x%29%5D%5E%7B2%7D%20%7D%20%5C%2C%20d%20x)
<u><em>Step(ii):-</em></u>
Given two curves are y = x² and y = 9
The point of intersection of two curves
y = x²...(i)
and y = 9 ...(ii)
Equating both equations , we get
x² - 9 =0
⇒ x² - 3² =0
⇒ (x+3)(x-3) =0
⇒ x+3=0 and x-3=0
x = 3 ⇒ y = 9
x = -3 ⇒y = 9
The point of intersection ( -3,9) and (3,9)
<u><em>Step(iii):-</em></u>
<em> </em> ![V = \pi \int\limits^a_b {[(f(x)]^{2} } \, -[g(x)]^{2})d x](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5Cint%5Climits%5Ea_b%20%7B%5B%28f%28x%29%5D%5E%7B2%7D%20%7D%20%5C%2C%20-%5Bg%28x%29%5D%5E%7B2%7D%29d%20x)
<em>The limits x- varies from -3 to 3</em>
<em> </em> 


V = π ( |-36| = 36Π cubic Centimetres
<u><em> Final answer:-</em></u>
<u><em>The volume of the solid</em></u>
V = π ( |-36| = 36Π cubic Centimetres