Well the first one is obtuse and more than 90 degrees, the 2nd one is also obtuse and more than 90 degrees, the 3rd one is acute and less than 90 degrees, the 4th one is obtuse and 180 degrees, and the 5th one is a right angle and is 90 degrees
Answer:
Function 1
Step-by-step explanation:
The y-intercept is the y-value when the x-value = 0.
In Function 1 the y-intercept is 1 because (0, 1).
In Function 2 the y-intercept is -3 because x = 0 y = -3.
And 1 > -3 so Function 1 is the answer.
Answer:C B A
2222222222222222222222222222222222222222222222222222222
Answer:
9 pieces represent 3/ 4 because
3/4 × 12 parts = 9 parts
mark me as brainliest
Answer:
a) ![\left(x,y\right)=\left(4.95,-4.95\right)](https://tex.z-dn.net/?f=%5Cleft%28x%2Cy%5Cright%29%3D%5Cleft%284.95%2C-4.95%5Cright%29)
b) ![r\angle\theta = 7\angle0.5236\,\text{radians}](https://tex.z-dn.net/?f=r%5Cangle%5Ctheta%20%3D%207%5Cangle0.5236%5C%2C%5Ctext%7Bradians%7D)
Step-by-step explanation:
Polar coordinates are represented as:
, where 'r' is the length (or magnitude) of the line, and '
' is the angle measured from the positive x-axis.
in our case:
![7\angle\dfrac{3\pi}{4}](https://tex.z-dn.net/?f=7%5Cangle%5Cdfrac%7B3%5Cpi%7D%7B4%7D)
to covert the polar to cartesian:
![x = r\cos{\theta}](https://tex.z-dn.net/?f=x%20%3D%20r%5Ccos%7B%5Ctheta%7D)
![y = r\sin{\theta}](https://tex.z-dn.net/?f=y%20%3D%20r%5Csin%7B%5Ctheta%7D)
we can plug in our values:
![x = 7\cos{\dfrac{3\pi}{4}} = -7\dfrac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=x%20%3D%207%5Ccos%7B%5Cdfrac%7B3%5Cpi%7D%7B4%7D%7D%20%3D%20-7%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
![y = 7\sin{\dfrac{3\pi}{4}} = 7\dfrac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=y%20%3D%207%5Csin%7B%5Cdfrac%7B3%5Cpi%7D%7B4%7D%7D%20%3D%207%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
the Cartesian coordinates are:
![\left(x,y\right)=\left(-7\dfrac{\sqrt{2}}{2},7\dfrac{\sqrt{2}}{2}\right)](https://tex.z-dn.net/?f=%5Cleft%28x%2Cy%5Cright%29%3D%5Cleft%28-7%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2C7%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cright%29)
![\left(x,y\right)=\left(4.95,-4.95\right)](https://tex.z-dn.net/?f=%5Cleft%28x%2Cy%5Cright%29%3D%5Cleft%284.95%2C-4.95%5Cright%29)
(b) to convert (x,y) = (6.06,-3.5)
we'll use the pythagoras theorem to find 'r'
![r^2 = x^2+y^2](https://tex.z-dn.net/?f=r%5E2%20%3D%20x%5E2%2By%5E2)
![r^2 = (6.06)^2+(-3.5)^2](https://tex.z-dn.net/?f=r%5E2%20%3D%20%286.06%29%5E2%2B%28-3.5%29%5E2)
![r = \sqrt{48.97} \approx 7](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%7B48.97%7D%20%5Capprox%207)
the angle can be found by:
![\tan{\theta} = \dfrac{y}{x}](https://tex.z-dn.net/?f=%5Ctan%7B%5Ctheta%7D%20%3D%20%5Cdfrac%7By%7D%7Bx%7D)
![\tan{\theta} = \dfrac{3.5}{6.06}](https://tex.z-dn.net/?f=%5Ctan%7B%5Ctheta%7D%20%3D%20%5Cdfrac%7B3.5%7D%7B6.06%7D)
![\theta = \arctan{left(\dfrac{3.5}{6.06}\right)}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Carctan%7Bleft%28%5Cdfrac%7B3.5%7D%7B6.06%7D%5Cright%29%7D)
![\theta = 0.5236 \text{radians}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%200.5236%20%5Ctext%7Bradians%7D)
to convert radians to degrees:
![\theta = 0.5236 \times \dfrac{180}{\pi} \approx 30^\circ](https://tex.z-dn.net/?f=%5Ctheta%20%3D%200.5236%20%5Ctimes%20%5Cdfrac%7B180%7D%7B%5Cpi%7D%20%5Capprox%2030%5E%5Ccirc)
writing in polar coordinates:
![r\angle\theta = 7\angle30^\circ\,\,\text{OR}\,\,7\angle0.5236\,\text{radians}](https://tex.z-dn.net/?f=r%5Cangle%5Ctheta%20%3D%207%5Cangle30%5E%5Ccirc%5C%2C%5C%2C%5Ctext%7BOR%7D%5C%2C%5C%2C7%5Cangle0.5236%5C%2C%5Ctext%7Bradians%7D)