Let r be a radius of a given circle and α be an angle, that corresponds to a sector.
The circle area is

and denote the sector area as

.
Then

(the ratio between area is the same as the ratio between coresponding angles).

.
Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
X + x - 5 + 3x + 25 = 180
5x + 20 = 180
5x = 160
x = 32
m<F = x - 5
m<F = 32 - 5
m<F = 27
It’s 15 km. You need to take the root from 9^2 + 12^2 wich equals 15. You need to use pythagoras a^2 + b^= c^2
Answer:
cost of producing the 501st item = $9.92
Step-by-step explanation:
The function representing the cost is given by;
C(x) = 10000 + 90x - 0.08x²
To get the cost of producing the 501st item, we have to first find the cost of producing 500 items and then do the same for 501 items then subtract the values gotten.
Thus;
C(500) = 10000 + 90(500) - 0.08(500)²
C(500) = 10000 + 45000 - 20000
C(500) = $35000
Similarly;
C(501) = 10000 + 90(501) - 0.08(501)²
C(501) = 10000 + 45090 - 20080.08
C(501) = $35009.92
cost of producing the 501st item = C(501) - C(500) = 35009.92 - 35000 = $9.92