Answer:
Sorry this is late and I think this is right.
They are both parallel, they have the same slope, and do <em>not </em>intersect. If you were to draw a slope out for it, you would find this to be true.
For example: Say the question called for you to explain why there aren't any solutions to these system of inequalities:
<em>y < - 1/2x -3</em>
<em>y > 1/2x + 2</em>
<em>y= -x/2 -3</em> and <em>y= -x/2 + 2 </em>have the same exact slope, are parallel, and never intersect. The first line is 5 units below the second line when x = 0. Because the lines are parallel, it is always below the second line. The solutions of y < - x/2 -3 are the points in the plane below the first line. The solutions of y > 1/2 + 2 are points above the second line.
I hope this helps you. Good luck on whatever you're working on and stay safe! Please let me know if this helped you or didn't.
Misleading may be present even t<span>hough all graphs may share the same data, and even the </span>slope<span> of the </span><span>data is the same. If the way the data is plotted is not correct, it can change the visual appearance of the angle made by the line on the graph. This is so because each plot has different scales on its vertical axis. As the scales are not correctly shown then there is where the misleading appears.</span>
I have no clue what that is
Answer:
∠X in the pre-image will be equal to ∠L in the main image
Step-by-step explanation:
△LMN is the result of a reflection of △XYZ which means △LMN is the mirror image △XYZ
hence, the left of △XYZ will be equivalent to the right of △LMN and the right of △XYZ will be equivalent to the left of △LMN
Hence, ∠X in the pre-image will be equal to ∠L in the main image