Anything to the power of 0 is just 1
You can do 4 to the second power and 4×4 equals 16
Answer:
b. E(X) = 3.015, STDEV(X)= 0.049, P (X ≤ 2.98) = 0.2941
Step-by-step explanation:
An uniform probability is a case of probability in which each outcome is equally as likely.
For this situation, we have a lower limit of the distribution that we call a and an upper limit that we call b.
The mean of the uniform probability distribution is:

The standard deviation of the uniform distribution is:

The probability that we find a value X lower than x is given by the following formula.

Uniform distribution between 2.93 and 3.1 volts
This means that
. So
Mean:

Standard deviation:

What is the probability that a battery has a voltage less than 2.98?

So the correct answer is:
b. E(X) = 3.015, STDEV(X)= 0.049, P (X ≤ 2.98) = 0.2941
I am guessing you want to round to the tenths, because nothing comes after the hundredths. So it would be 0.9. (But it would stay the same if you are rounding to the hundredths.)