The zeroes of <span>f(x) = x^5-12x^2+32x can be found by factoring,
</span><span>f(x) = x^5-12x^2+32x=(x-8)(x-4)
By the zero product theorem, (x-8)=0 or (x-4)=0 which means
x=8 or x=4.
So the zeroes of f(x) are S={4,8}</span>
Answer:
- g(20) > f(20)
- g(x) exceeds f(x) for any x > 4
Step-by-step explanation:
As with most graphing problems not involving straight lines, it works well to start with a table of values. Pick a few values of x and compute f(x) and g(x) for those values. Plot the points and draw a smooth curve through them.
As in the attached, your table will show that there are two points of intersection between f(x) and g(x), and that for values of x more than 4, g(x) becomes much greater very quickly. Both curves rapidly reach the top of your graph space.
To find whether f(20) or g(20) is greater, you can evaluate the functions for that value of x.
f(20) = 20² = 400
g(20) = 2²⁰ = 1,048,576
Clearly, g(20) has a greater value.
Its 4-5(7) the answer is 7 (im wrong idek the answer
Po
Methane(CH4)
Ethane(C2H6)
Propane(C3H8)
Butane(C4H10)
Pentane(C5H12)
Hexane(C6H14)
Jul 3, 2018
http://www.gcesystems.com › what-...
Answer:
everything can be found in the picture above. I hope it helps