Answer:
1. 21x⁴+3y-35x² + 41
2. -21x⁴-3y+6x² + x
Step-by-step explanation:
When adding and subtracting polynomials , you can use the distributive property to add or subtract the coefficients of like terms.
1. The polynomial is 21x⁴ + 3y -6x² + 34
To obtain polynomial 29x² -7 , we must subtract some polynomial from it.
Let that polynomial be k.
So, 21x⁴ + 3y -6x² + 34 - k = 29x² -7
k = 21x⁴ + 3y - 6x² +34 - 29x² +7 = 21x⁴ + 3y - 35x² + 41
2. To obtain a first degree polynomial, let that polynomial be x +34
So, 21x⁴ + 3y - 6x² + 34 + K = x + 34
K = x + 34 - 21x⁴ -3y + 6x² - 34
= -21x⁴ - 3y + 6x² + x
Answer:
<em><u>4(10+9) - 40 + 36</u></em>
<em><u>9(5+2) - 45 + 18</u></em>
<em><u>3(12+7) - 36 + 21</u></em>
Here are a few things you'll need to know for this question:
- Domain: <u>The list of x-values that are possible on a line.</u>
- Range: <u>The list of y-values that are possible on a line.</u>
- Interval Notation: <u>Shows the domain/range using the endpoints</u>. Brackets mean that the endpoint is included, parentheses mean the endpoint is excluded. Ex: (2,10]. 2 is excluded, 10 is included.
- Closed Circles: <u>The endpoint is included.</u>
- Open Circles: <u>The endpoint is excluded.</u>
So firstly, let's look at the domain. We see that there is a closed circle at x = -2 and an open circle at x = 5. Using what we know, <u>the interval notation of the domain is [-2,5).</u>
Next, let's look at the range. We see that there is a closed circle at y = -5 and an open circle at y = 2. Using what we know, <u>the interval notation of the range is [-5,2).</u>
Answer:
1,11,13,17,143,187,221,2431
Step-by-step explanation: