Answer no copy paste
Homeostasis and thermoregulation
When temperatures are too low, these processes may be disrupted, which can lead to cellular damage and even death. Homoeothermic endotherms, such as bears, bats, and birds, regulate their body temperature by generating heat internally.
<u><em>please mark me as the brainliest and add thanks. </em></u>
Less than 5% of the water taken up by roots remains in the plant, that water is vital for plant structure and function. The water is important for driving biochemical processes, but also it creates turgor so that the plant can stand without having actual bones.
Crop monitoring makes use of space-based data to keep tabs on crop development and forecast crop yields for certain fields that have been planted.
<h3>What is monitoring systems?</h3>
A system for monitoring agriculture consists of a network with wireless sensors. These sensors gather information from several nodes positioned on the playing surface. Then, specialists or nearby farmers analyze this data. The data can be used to make a number of inferences about weather patterns, soil fertility, crop quality, etc. A system is developed for agricultural field monitoring in IoT-based modern agriculture with the aid of sensor like light, humid, temperatures, soil moisture, etc. Farmers may monitor the condition of thier fields from any location. IoT-based smart farming is considerably more efficient than conventional farming.
<h3>How do farmers monitor their crops?</h3>
Nowadays, satellite techniques are widely employed in agriculture, and many farmers use them frequently to observe their fields and assess the condition of their crops. Crop monitoring is crucial for managing various pests, weeds, and diseases that affect crops. This gives information about the crop's current situation, and you can then look ahead in time to forecast what will probably be the crop's next problem.
To know more about Monitoring Systems visit:
brainly.com/question/28776835
#SPJ1
Answer:
movement to and fro or around something, especially that of fluid in a closed system.
Answer: the cfu/g Gram-negative bacteria in the fecal sample is C = 3.0 × 10^3
Explanation:
We know that; Gram negative bacteria looks pale reddish in color under a light microscope from Gram staining.
therefore
There are 30 red bacterial colonies counted.
1 mL of from tube 1 was removed and added to tube with 99 mL saline (tube 2) dilution is 1/100.
transferred volume into the plate is 1 mL.
Now, we have to determine the cfu/g Gram-negative bacteria in the fecal sample
Formula to calculate CFU/g bacteria in fecal sample is expressed as;
C = n/(s×d )
where C is concentration (CFU/g)
, n is number of colonies
, s is volume transferred to plate
, d is dilution factor.
so we substitute
C = 30 / ((1/100) × 1)
C = 30 / 0.01
C = 3000
C = 3.0 × 10^3
THERFERE, the cfu/g Gram-negative bacteria in the fecal sample is C = 3.0 × 10^3